These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1556743)

  • 1. Exons encoding the highly conserved part of human glutaminyl-tRNA synthetase.
    Kaiser E; Eberhard D; Knippers R
    J Mol Evol; 1992 Jan; 34(1):45-53. PubMed ID: 1556743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The primary structure of human glutaminyl-tRNA synthetase. A highly conserved core, amino acid repeat regions, and homologies with translation elongation factors.
    Fett R; Knippers R
    J Biol Chem; 1991 Jan; 266(3):1448-55. PubMed ID: 1988429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the aminoacyl-tRNA synthetase family and the organization of the Drosophila glutamyl-prolyl-tRNA synthetase gene. Intron/exon structure of the gene, control of expression of the two mRNAs, selective advantage of the multienzyme complex.
    Cerini C; Semeriva M; Gratecos D
    Eur J Biochem; 1997 Feb; 244(1):176-85. PubMed ID: 9063462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
    Uemura H; Conley J; Yamao F; Rogers J; Söll D
    Protein Seq Data Anal; 1988; 1(6):479-85. PubMed ID: 2464170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retracing the evolution of amino acid specificity in glutaminyl-tRNA synthetase.
    Hong KW; Ibba M; Söll D
    FEBS Lett; 1998 Aug; 434(1-2):149-54. PubMed ID: 9738468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cDNA sequence, predicted primary structure, and evolving amphiphilic helix of human aspartyl-tRNA synthetase.
    Jacobo-Molina A; Peterson R; Yang DC
    J Biol Chem; 1989 Oct; 264(28):16608-12. PubMed ID: 2674137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human EPRS locus (formerly the QARS locus): a gene encoding a class I and a class II aminoacyl-tRNA synthetase.
    Kaiser E; Hu B; Becher S; Eberhard D; Schray B; Baack M; Hameister H; Knippers R
    Genomics; 1994 Jan; 19(2):280-90. PubMed ID: 8188258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein.
    Quevillon S; Robinson JC; Berthonneau E; Siatecka M; Mirande M
    J Mol Biol; 1999 Jan; 285(1):183-95. PubMed ID: 9878398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene for yeast glutamine tRNA synthetase encodes a large amino-terminal extension and provides a strong confirmation of the signature sequence for a group of the aminoacyl-tRNA synthetases.
    Ludmerer SW; Schimmel P
    J Biol Chem; 1987 Aug; 262(22):10801-6. PubMed ID: 3301841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The core region of human glutaminyl-tRNA synthetase homologies with the Escherichia coli and yeast enzymes.
    Thömmes P; Fett R; Schray B; Kunze N; Knippers R
    Nucleic Acids Res; 1988 Jun; 16(12):5391-406. PubMed ID: 3290852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The recognition of E. coli glutamine tRNA by glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Thomann HU; Sylvers LA; Ohtsuka E; Inokuchi H; Söll D
    Nucleic Acids Symp Ser; 1993; (29):211-3. PubMed ID: 7504247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.
    Vincent C; Tarbouriech N; Härtlein M
    Eur J Biochem; 1997 Nov; 250(1):77-84. PubMed ID: 9431993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Structure of aminoacyl-tRNA-synthetase of higher eukaryotes from molecular cloning data].
    Grigor'eva AIu
    Mol Biol (Mosk); 1994; 28(5):978-90. PubMed ID: 7990843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspartyl-tRNA synthetase from Escherichia coli: cloning and characterisation of the gene, homologies of its translated amino acid sequence with asparaginyl- and lysyl-tRNA synthetases.
    Eriani G; Dirheimer G; Gangloff J
    Nucleic Acids Res; 1990 Dec; 18(23):7109-18. PubMed ID: 2129559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intron positions delineate the evolutionary path of a pervasively appended peptide in five human aminoacyl-tRNA synthetases.
    Shiba K
    J Mol Evol; 2002 Dec; 55(6):727-33. PubMed ID: 12486531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteinyl-tRNA synthetase is a direct descendant of the first aminoacyl-tRNA synthetase.
    Avalos J; Corrochano LM; Brenner S
    FEBS Lett; 1991 Jul; 286(1-2):176-80. PubMed ID: 1864365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution.
    Rould MA; Perona JJ; Söll D; Steitz TA
    Science; 1989 Dec; 246(4934):1135-42. PubMed ID: 2479982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between human tRNA synthetases involves repeated sequence elements.
    Rho SB; Lee KH; Kim JW; Shiba K; Jo YJ; Kim S
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10128-33. PubMed ID: 8816763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of two cDNAs encoding functional human cytoplasmic cysteinyl-tRNA synthetase.
    Davidson E; Caffarella J; Vitseva O; Hou YM; King MP
    Biol Chem; 2001 Mar; 382(3):399-406. PubMed ID: 11347887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.