These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15567902)

  • 1. Opposite effects of in vitro lactate on erythrocyte deformability in athletes and untrained subjects.
    Connes P; Bouix D; Py G; Prefaut C; Mercier J; Brun JF; Caillaud C
    Clin Hemorheol Microcirc; 2004; 31(4):311-8. PubMed ID: 15567902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal relationships between blood lactate and hemorheology in athletes: another hemorheologic paradox?
    Varlet-Marie E; Brun JF
    Clin Hemorheol Microcirc; 2004; 30(3-4):331-7. PubMed ID: 15258363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximal exercise and lactate do not change red blood cell aggregation in well trained athletes.
    Connes P; Caillaud C; Py G; Mercier J; Hue O; Brun JF
    Clin Hemorheol Microcirc; 2007; 36(4):319-26. PubMed ID: 17502702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is hemoglobin desaturation related to blood viscosity in athletes during exercise?
    Connes P; Bouix D; Durand F; Kippelen P; Mercier J; Prefaut C; Brun JF; Caillaud C
    Int J Sports Med; 2004 Nov; 25(8):569-74. PubMed ID: 15531998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of combined active recovery from supramaximal exercise on blood lactate disappearance in trained and untrained man.
    Gmada N; Bouhlel E; Mrizak I; Debabi H; Ben Jabrallah M; Tabka Z; Feki Y; Amri M
    Int J Sports Med; 2005 Dec; 26(10):874-9. PubMed ID: 16320173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partially opposite hemorheological effects of aging and training at middle age.
    Manetta J; Aloulou I; Varlet-Marie E; Mercier J; Brun JF
    Clin Hemorheol Microcirc; 2006; 35(1-2):239-44. PubMed ID: 16899935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does exercise-induced hypoxemia modify lactate influx into erythrocytes and hemorheological parameters in athletes?
    Connes P; Bouix D; Py G; Caillaud C; Kippelen P; Brun JF; Varray A; Prefaut C; Mercier J
    J Appl Physiol (1985); 2004 Sep; 97(3):1053-8. PubMed ID: 15121747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole blood, plasma viscosity, and erythrocyte aggregation as a determining factor of competitiveness in standard bred trotters.
    Stoiber B; Zach C; Izay B; Windberger U
    Clin Hemorheol Microcirc; 2005; 32(1):31-41. PubMed ID: 15665424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate distribution in the blood compartments of sickle cell trait carriers during incremental exercise and recovery.
    Sara F; Hardy-Dessources MD; Marlin L; Connes P; Hue O
    Int J Sports Med; 2006 Jun; 27(6):436-43. PubMed ID: 16767607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical exercise effect on erythrocyte metabolism.
    Tomasik M
    Acta Physiol Pol; 1979; 30(5-6):633-8. PubMed ID: 532675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postexercise red cell aggregation is negatively correlated with blood lactate rate of disappearance.
    Brun JF; Belhabas H; Granat MCh; Sagnes C; Thöni G; Micallef JP; Mercier J
    Clin Hemorheol Microcirc; 2002; 26(4):231-9. PubMed ID: 12122228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrocyte adaptation to oxidative stress in endurance training.
    Petibois C; Déléris G
    Arch Med Res; 2005; 36(5):524-31. PubMed ID: 16099333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of high-intensity isokinetic exercise on salivary cortisol in athletes with different training schedules: relationships to serum cortisol and lactate.
    Paccotti P; Minetto M; Terzolo M; Ventura M; Ganzit GP; Borrione P; Termine A; Angeli A
    Int J Sports Med; 2005 Nov; 26(9):747-55. PubMed ID: 16237620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melatonin prevents lipid peroxidation in human erythrocytes but augments deterioration of deformability after in vitro oxidative stress.
    Dikmenoglu N; Ileri E; Seringec N; Ercil D
    Clin Hemorheol Microcirc; 2008; 40(3):235-42. PubMed ID: 19029647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of creatine on erythrocyte rheology in vitro.
    Lipovac V; Gavella M; Vucić M; Mrzljak V; Rocić B
    Clin Hemorheol Microcirc; 2000; 22(1):45-52. PubMed ID: 10711821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired erythrocytes deformability in H(2)O(2)-induced oxidative stress: protective effect of L-carnosine.
    Aydogan S; Yapislar H; Artis S; Aydogan B
    Clin Hemorheol Microcirc; 2008; 39(1-4):93-8. PubMed ID: 18503115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global gene expression in skeletal muscle from well-trained strength and endurance athletes.
    Stepto NK; Coffey VG; Carey AL; Ponnampalam AP; Canny BJ; Powell D; Hawley JA
    Med Sci Sports Exerc; 2009 Mar; 41(3):546-65. PubMed ID: 19204596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemorheologic effects of low intensity endurance training in sedentary patients suffering from the metabolic syndrome.
    Aloulou I; Varlet-Marie E; Mercier J; Brun JF
    Clin Hemorheol Microcirc; 2006; 35(1-2):333-9. PubMed ID: 16899953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between hemodynamic, hemorheological and metabolic responses during exercise.
    Connes P; Tripette J; Mukisi-Mukaza M; Baskurt OK; Toth K; Meiselman HJ; Hue O; Antoine-Jonville S
    Biorheology; 2009; 46(2):133-43. PubMed ID: 19458416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise hemorheology: Moving from old simplistic paradigms to a more complex picture.
    Brun JF; Varlet-Marie E; Romain AJ; Guiraudou M; Raynaud de Mauverger E
    Clin Hemorheol Microcirc; 2013; 55(1):15-27. PubMed ID: 23478223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.