BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15568086)

  • 1. A facile chemical route to semiconductor metal sulfide nanocrystal superlattices.
    Liu Z; Liang J; Xu D; Lu J; Qian Y
    Chem Commun (Camb); 2004 Dec; (23):2724-5. PubMed ID: 15568086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile "dispersion-decomposition" route to metal sulfide nanocrystals.
    Zhuang Z; Lu X; Peng Q; Li Y
    Chemistry; 2011 Sep; 17(37):10445-52. PubMed ID: 21915921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism.
    Ghezelbash A; Korgel BA
    Langmuir; 2005 Oct; 21(21):9451-6. PubMed ID: 16207021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthetic method for transition-metal chalcogenide nanocrystals.
    Wang DS; Zheng W; Hao CH; Peng Q; Li YD
    Chemistry; 2009; 15(8):1870-5. PubMed ID: 19123218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals.
    Han W; Yi L; Zhao N; Tang A; Gao M; Tang Z
    J Am Chem Soc; 2008 Oct; 130(39):13152-61. PubMed ID: 18774814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of sulfide and selenide colloidal semiconductor nanocrystals.
    Wang X; Zhuang J; Peng Q; Li Y
    Langmuir; 2006 Aug; 22(17):7364-8. PubMed ID: 16893239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot synthesis of copper-indium sulfide nanocrystal heterostructures with acorn, bottle, and larva shapes.
    Choi SH; Kim EG; Hyeon T
    J Am Chem Soc; 2006 Mar; 128(8):2520-1. PubMed ID: 16492020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures.
    Stoeva S; Klabunde KJ; Sorensen CM; Dragieva I
    J Am Chem Soc; 2002 Mar; 124(10):2305-11. PubMed ID: 11878985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2 Te thin films.
    Urban JJ; Talapin DV; Shevchenko EV; Kagan CR; Murray CB
    Nat Mater; 2007 Feb; 6(2):115-21. PubMed ID: 17237786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled synthesis and luminescence of semiconductor nanorods.
    Li P; Wang L; Wang L; Li Y
    Chemistry; 2008; 14(19):5951-6. PubMed ID: 18491306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of hybrid CdS-Au colloidal nanostructures.
    Saunders AE; Popov I; Banin U
    J Phys Chem B; 2006 Dec; 110(50):25421-9. PubMed ID: 17165989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and Characterization of Metal Sulfides in Ethylenediamine under Ambient Conditions through a gamma-Irradiation Route.
    Chen M; Xie Y; Chen H; Qiao Z; Qian Y
    J Colloid Interface Sci; 2001 May; 237(1):47-53. PubMed ID: 11334513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystalline superlattices from single-sized quantum dots.
    Zheng N; Bu X; Lu H; Zhang Q; Feng P
    J Am Chem Soc; 2005 Aug; 127(34):11963-5. PubMed ID: 16117534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition.
    Yang J; Elim HI; Zhang Q; Lee JY; Ji W
    J Am Chem Soc; 2006 Sep; 128(36):11921-6. PubMed ID: 16953633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds.
    Tang A; Wang Y; Ye H; Zhou C; Yang C; Li X; Peng H; Zhang F; Hou Y; Teng F
    Nanotechnology; 2013 Sep; 24(35):355602. PubMed ID: 23924847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective octadecylamine system for nanocrystal synthesis.
    Wang D; Li Y
    Inorg Chem; 2011 Jun; 50(11):5196-202. PubMed ID: 21561069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical conversion synthesis and optical properties of metal sulfide hollow microspheres.
    Zhu YF; Fan DH; Shen WZ
    Langmuir; 2008 Oct; 24(19):11131-6. PubMed ID: 18720954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.