BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15568143)

  • 1. Frequency modulation patterns in the echolocation signals of two vespertilionid bats.
    Boonman A; Schnitzler HU
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):13-21. PubMed ID: 15568143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats.
    Götze S; Koblitz JC; Denzinger A; Schnitzler HU
    Sci Rep; 2016 Aug; 6():30978. PubMed ID: 27502900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flight and echolocation behaviour of three vespertilionid bat species while commuting on flyways.
    Schaub A; Schnitzler HU
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Dec; 193(12):1185-94. PubMed ID: 17885759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of the approach phase of landing echolocating Greater Mouse-eared bats.
    Melcón ML; Schnitzler HU; Denzinger A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jan; 195(1):69-77. PubMed ID: 18998148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic adjustment of echolocation pulse structure of big-footed myotis (Myotis macrodactylus) in response to different habitats.
    Wang L; Luo J; Wang H; Ou W; Jiang T; Liu Y; Lyle D; Feng J
    J Acoust Soc Am; 2014 Feb; 135(2):928-32. PubMed ID: 25234900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Between-species jamming avoidance in Pipistrelles?
    Necknig V; Zahn A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):469-73. PubMed ID: 20938777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Echolocation signal structure in the Megachiropteran bat Rousettus aegyptiacus Geoffroy 1810.
    Holland RA; Waters DA; Rayner JM
    J Exp Biol; 2004 Dec; 207(Pt 25):4361-9. PubMed ID: 15557022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The communicative potential of bat echolocation pulses.
    Jones G; Siemers BM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):447-57. PubMed ID: 20686895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.
    Matsuta N; Hiryu S; Fujioka E; Yamada Y; Riquimaroux H; Watanabe Y
    J Exp Biol; 2013 Apr; 216(Pt 7):1210-8. PubMed ID: 23487269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum).
    Kobayasi KI; Hiryu S; Shimozawa R; Riquimaroux H
    J Acoust Soc Am; 2012 Nov; 132(5):EL417-22. PubMed ID: 23145704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissimilarities in the vocal control over communication and echolocation calls in bats.
    Fenzl T; Schuller G
    Behav Brain Res; 2007 Sep; 182(2):173-9. PubMed ID: 17227683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of climate on acoustic signals: does atmospheric sound absorption matter for bird song and bat echolocation?
    Snell-Rood EC
    J Acoust Soc Am; 2012 Feb; 131(2):1650-8. PubMed ID: 22352535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii.
    Russo D; Jones G; Arlettaz R
    J Exp Biol; 2007 Jan; 210(Pt 1):166-76. PubMed ID: 17170159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intensity control during target approach in echolocating bats; stereotypical sensori-motor behaviour in Daubenton's bats, Myotis daubentonii.
    Boonman A; Jones G
    J Exp Biol; 2002 Sep; 205(Pt 18):2865-74. PubMed ID: 12177150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New model for gain control of signal intensity to object distance in echolocating bats.
    Nørum U; Brinkløv S; Surlykke A
    J Exp Biol; 2012 Sep; 215(Pt 17):3045-54. PubMed ID: 22875770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry.
    Holderied MW; Korine C; Fenton MB; Parsons S; Robson S; Jones G
    J Exp Biol; 2005 Apr; 208(Pt 7):1321-7. PubMed ID: 15781892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation.
    Budenz T; Denzinger A; Schnitzler HU
    PLoS One; 2018; 13(3):e0194600. PubMed ID: 29543882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum.
    Ma J; Kobayasi K; Zhang S; Metzner W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):535-50. PubMed ID: 16418857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Compromise' in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros larvatus).
    Chen Y; Liu Q; Su Q; Sun Y; Peng X; He X; Zhang L
    PLoS One; 2016; 11(3):e0151382. PubMed ID: 27029005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouth gape angle has little effect on the transmitted signals of big brown bats (Eptesicus fuscus).
    Kloepper LN; Gaudette JE; Simmons JA; Buck JR
    J Acoust Soc Am; 2014 Oct; 136(4):1964-71. PubMed ID: 25324095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.