These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 15568916)
1. On the control of chaotic systems via symbolic time series analysis. Piccardi C Chaos; 2004 Dec; 14(4):1026-34. PubMed ID: 15568916 [TBL] [Abstract][Full Text] [Related]
2. On parameter estimation of chaotic systems via symbolic time-series analysis. Piccardi C Chaos; 2006 Dec; 16(4):043115. PubMed ID: 17199393 [TBL] [Abstract][Full Text] [Related]
3. Estimation of entropies and dimensions by nonlinear symbolic time series analysis. Finn JM; Goettee JD; Toroczkai Z; Anghel M; Wood BP Chaos; 2003 Jun; 13(2):444-56. PubMed ID: 12777107 [TBL] [Abstract][Full Text] [Related]
5. Randomized shortest-path problems: two related models. Saerens M; Achbany Y; Fouss F; Yen L Neural Comput; 2009 Aug; 21(8):2363-404. PubMed ID: 19323635 [TBL] [Abstract][Full Text] [Related]
6. Globally enumerating unstable periodic orbits for observed data using symbolic dynamics. Buhl M; Kennel MB Chaos; 2007 Sep; 17(3):033102. PubMed ID: 17902984 [TBL] [Abstract][Full Text] [Related]
7. A method of estimating the noise level in a chaotic time series. Jayawardena AW; Xu P; Li WK Chaos; 2008 Jun; 18(2):023115. PubMed ID: 18601482 [TBL] [Abstract][Full Text] [Related]
8. Q-S (complete or anticipated) synchronization backstepping scheme in a class of discrete-time chaotic (hyperchaotic) systems: a symbolic-numeric computation approach. Yan Z Chaos; 2006 Mar; 16(1):013119. PubMed ID: 16599750 [TBL] [Abstract][Full Text] [Related]
9. Topological invariants in the study of a chaotic food chain system. Duarte J; Januário C; Martins N Chaos; 2008 Jun; 18(2):023109. PubMed ID: 18601476 [TBL] [Abstract][Full Text] [Related]
10. Cost-effectiveness analysis of treatments for chronic disease: using R to incorporate time dependency of treatment response. Hawkins N; Sculpher M; Epstein D Med Decis Making; 2005; 25(5):511-9. PubMed ID: 16160207 [TBL] [Abstract][Full Text] [Related]
11. Generalized projective synchronization of chaotic systems with unknown dead-zone input: observer-based approach. Hung YC; Hwang CC; Liao TL; Yan JJ Chaos; 2006 Sep; 16(3):033125. PubMed ID: 17014230 [TBL] [Abstract][Full Text] [Related]
12. Reliability analysis based on the losses from failures. Todinov MT Risk Anal; 2006 Apr; 26(2):311-35. PubMed ID: 16573623 [TBL] [Abstract][Full Text] [Related]
13. Generalized entropies of chaotic maps and flows: A unified approach. Badii R Chaos; 1997 Dec; 7(4):694-700. PubMed ID: 12779695 [TBL] [Abstract][Full Text] [Related]
15. Mean residence times in linear compartmental systems. Symbolic formulae for their direct evaluation. García-Meseguer MJ; Vidal de Labra JA; García-Moreno M; García-Cánovas F; Havsteen BH; Varón R Bull Math Biol; 2003 Mar; 65(2):279-308. PubMed ID: 12675333 [TBL] [Abstract][Full Text] [Related]
16. Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty. Flores-Alsina X; Rodríguez-Roda I; Sin G; Gernaey KV Water Res; 2008 Nov; 42(17):4485-97. PubMed ID: 18804255 [TBL] [Abstract][Full Text] [Related]
17. Modeling and stabilization of continuous-time packet-based networked control systems. Zhao YB; Liu GP; Rees D IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1646-52. PubMed ID: 19717363 [TBL] [Abstract][Full Text] [Related]
18. Design of fast state observers using a backstepping-like approach with application to synchronization of chaotic systems. Zaher AA Chaos; 2008 Jun; 18(2):023114. PubMed ID: 18601481 [TBL] [Abstract][Full Text] [Related]
19. A note on chaotic unimodal maps and applications. Zhou CT; He XT; Yu MY; Chew LY; Wang XG Chaos; 2006 Sep; 16(3):033113. PubMed ID: 17014218 [TBL] [Abstract][Full Text] [Related]