These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15568918)

  • 1. Localized error bursts in estimating the state of spatiotemporal chaos.
    Baek SJ; Hunt BR; Szunyogh I; Zimin A; Ott E
    Chaos; 2004 Dec; 14(4):1042-9. PubMed ID: 15568918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of extensive spatiotemporal chaos in Rayleigh-Benard convection.
    Egolf DA; Melnikov IV; Pesch W; Ecke RE
    Nature; 2000 Apr; 404(6779):733-6. PubMed ID: 10783880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization and control of spatiotemporal chaos using time-series data from local regions.
    Parekh N; Ravi Kumar V; Kulkarni BD
    Chaos; 1998 Mar; 8(1):300-306. PubMed ID: 12779733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-BĂ©nard convection.
    Cornick M; Hunt B; Ott E; Kurtuldu H; Schatz MF
    Chaos; 2009 Mar; 19(1):013108. PubMed ID: 19334972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of transient and intermittent dynamics in spatiotemporal chaotic systems.
    Rempel EL; Chian AC
    Phys Rev Lett; 2007 Jan; 98(1):014101. PubMed ID: 17358476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic saddles at the onset of intermittent spatiotemporal chaos.
    Rempel EL; Chian AC; Miranda RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056217. PubMed ID: 18233749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos.
    Innocenti G; Morelli A; Genesio R; Torcini A
    Chaos; 2007 Dec; 17(4):043128. PubMed ID: 18163792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperlabyrinth chaos: from chaotic walks to spatiotemporal chaos.
    Chlouverakis KE; Sprott JC
    Chaos; 2007 Jun; 17(2):023110. PubMed ID: 17614664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scale and space localization in the Kuramoto-Sivashinsky equation.
    Wittenberg RW; Holmes P
    Chaos; 1999 Jun; 9(2):452-465. PubMed ID: 12779842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Images of synchronized chaos: Experiments with circuits.
    Rulkov NF
    Chaos; 1996 Sep; 6(3):262-279. PubMed ID: 12780256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal chaos in an electric current driven ionic reaction-diffusion system.
    Hasal P; Munster AF; Marek M
    Chaos; 1994 Sep; 4(3):531-546. PubMed ID: 12780130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coupled map lattice model for rheological chaos in sheared nematic liquid crystals.
    Kamil SM; Menon GI; Sinha S
    Chaos; 2010 Dec; 20(4):043123. PubMed ID: 21198093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling chaos in spatially extended beam-plasma system by the continuous delayed feedback.
    Hramov AE; Koronovskii AA; Rempen IS
    Chaos; 2006 Mar; 16(1):013123. PubMed ID: 16599754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos and intermittent bursting in a reaction-diffusion process.
    Schwartz IB; Triandaf I
    Chaos; 1996 Jun; 6(2):229-237. PubMed ID: 12780251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaotic synchronizations of spatially extended systems as nonequilibrium phase transitions.
    Cencini M; Tessone CJ; Torcini A
    Chaos; 2008 Sep; 18(3):037125. PubMed ID: 19045499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaotic transition of random dynamical systems and chaos synchronization by common noises.
    Rim S; Hwang DU; Kim I; Kim CM
    Phys Rev Lett; 2000 Sep; 85(11):2304-7. PubMed ID: 10977997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic phase transition from localized to spatiotemporal chaos in coupled circle map with feedback.
    Sonawane AR; Gade PM
    Chaos; 2011 Mar; 21(1):013122. PubMed ID: 21456836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and experimental studies of parameter estimation based on chaos feedback synchronization.
    Zhang Y; Tao C; Jiang JJ
    Chaos; 2006 Dec; 16(4):043122. PubMed ID: 17199400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projecting low-dimensional chaos from spatiotemporal dynamics in a model for plastic instability.
    Sarmah R; Ananthakrishna G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056208. PubMed ID: 23214858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.
    Wang R; Gao JY
    Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.