BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 15568983)

  • 1. Repair and genetic consequences of endogenous DNA base damage in mammalian cells.
    Barnes DE; Lindahl T
    Annu Rev Genet; 2004; 38():445-76. PubMed ID: 15568983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative damage to purines in DNA: role of mammalian Ogg1.
    Klungland A; Bjelland S
    DNA Repair (Amst); 2007 Apr; 6(4):481-8. PubMed ID: 17127104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base excision repair and its role in maintaining genome stability.
    Baute J; Depicker A
    Crit Rev Biochem Mol Biol; 2008; 43(4):239-76. PubMed ID: 18756381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice.
    Trapp C; Reite K; Klungland A; Epe B
    Oncogene; 2007 Jun; 26(27):4044-8. PubMed ID: 17213818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organ and cell specificity of base excision repair mutants in mice.
    Larsen E; Meza TJ; Kleppa L; Klungland A
    Mutat Res; 2007 Jan; 614(1-2):56-68. PubMed ID: 16765995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of the nucleotide excision repair proteins in the removal of oxidative DNA base damage in mammalian cells.
    Rybanská I; Pirsel M
    Neoplasma; 2003; 50(6):389-95. PubMed ID: 14689058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in understanding the coupling of DNA base modifying enzymes to processes involving base excision repair.
    Wyatt MD
    Adv Cancer Res; 2013; 119():63-106. PubMed ID: 23870509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Base excision repair].
    Sliwiński T; Błasiak J
    Postepy Biochem; 2005; 51(2):120-9. PubMed ID: 16209349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida.
    Saumaa S; Tover A; Tark M; Tegova R; Kivisaar M
    J Bacteriol; 2007 Aug; 189(15):5504-14. PubMed ID: 17545288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of MUTYH and MSH2 in the control of oxidative DNA damage, genetic instability, and tumorigenesis.
    Russo MT; De Luca G; Casorelli I; Degan P; Molatore S; Barone F; Mazzei F; Pannellini T; Musiani P; Bignami M
    Cancer Res; 2009 May; 69(10):4372-9. PubMed ID: 19435918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of oxidative DNA damage is delayed in the Ser326Cys polymorphic variant of the base excision repair protein OGG1.
    Kershaw RM; Hodges NJ
    Mutagenesis; 2012 Jul; 27(4):501-10. PubMed ID: 22451681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct visualization of repair of oxidative damage by OGG1 in the nuclei of live cells.
    Zielinska A; Davies OT; Meldrum RA; Hodges NJ
    J Biochem Mol Toxicol; 2011; 25(1):1-7. PubMed ID: 21322094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of base excision repair enzymes Nth1p and Apn2p from Schizosaccharomyces pombe in processing alkylation and oxidative DNA damage.
    Sugimoto T; Igawa E; Tanihigashi H; Matsubara M; Ide H; Ikeda S
    DNA Repair (Amst); 2005 Nov; 4(11):1270-80. PubMed ID: 16076563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C --> T mutagenesis and gamma-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases.
    An Q; Robins P; Lindahl T; Barnes DE
    EMBO J; 2005 Jun; 24(12):2205-13. PubMed ID: 15902269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different DNA repair strategies to combat the threat from 8-oxoguanine.
    Russo MT; De Luca G; Degan P; Bignami M
    Mutat Res; 2007 Jan; 614(1-2):69-76. PubMed ID: 16769088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Base excision repair of DNA: glycosylases].
    Korolev BG
    Genetika; 2005 Jun; 41(6):725-35. PubMed ID: 16080596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosstalk of DNA glycosylases with pathways other than base excision repair.
    Kovtun IV; McMurray CT
    DNA Repair (Amst); 2007 Apr; 6(4):517-29. PubMed ID: 17129768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The peroxisome proliferator WY-14,643 promotes hepatocarcinogenesis caused by endogenously generated oxidative DNA base modifications in repair-deficient Csbm/m/Ogg1-/- mice.
    Trapp C; Schwarz M; Epe B
    Cancer Res; 2007 Jun; 67(11):5156-61. PubMed ID: 17545594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strikingly different properties of uracil-DNA glycosylases UNG2 and SMUG1 may explain divergent roles in processing of genomic uracil.
    Doseth B; Ekre C; Slupphaug G; Krokan HE; Kavli B
    DNA Repair (Amst); 2012 Jun; 11(6):587-93. PubMed ID: 22483865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rate of base excision repair of uracil is controlled by the initiating glycosylase.
    Visnes T; Akbari M; Hagen L; Slupphaug G; Krokan HE
    DNA Repair (Amst); 2008 Nov; 7(11):1869-81. PubMed ID: 18721906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.