BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15569306)

  • 1. D1 dopamine receptor signaling involves caveolin-2 in HEK-293 cells.
    Yu P; Yang Z; Jones JE; Wang Z; Owens SA; Mueller SC; Felder RA; Jose PA
    Kidney Int; 2004 Dec; 66(6):2167-80. PubMed ID: 15569306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential dopamine receptor subtype regulation of adenylyl cyclases in lipid rafts in human embryonic kidney and renal proximal tubule cells.
    Yu P; Sun M; Villar VA; Zhang Y; Weinman EJ; Felder RA; Jose PA
    Cell Signal; 2014 Nov; 26(11):2521-9. PubMed ID: 25049074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components.
    Head BP; Patel HH; Roth DM; Murray F; Swaney JS; Niesman IR; Farquhar MG; Insel PA
    J Biol Chem; 2006 Sep; 281(36):26391-9. PubMed ID: 16818493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of D1 dopamine receptor trafficking and signaling by caveolin-1.
    Kong MM; Hasbi A; Mattocks M; Fan T; O'Dowd BF; George SR
    Mol Pharmacol; 2007 Nov; 72(5):1157-70. PubMed ID: 17699686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes.
    Ostrom RS; Bundey RA; Insel PA
    J Biol Chem; 2004 May; 279(19):19846-53. PubMed ID: 15007069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caveolin-1 and lipid microdomains regulate Gs trafficking and attenuate Gs/adenylyl cyclase signaling.
    Allen JA; Yu JZ; Dave RH; Bhatnagar A; Roth BL; Rasenick MM
    Mol Pharmacol; 2009 Nov; 76(5):1082-93. PubMed ID: 19696145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmentation of cyclic adenosine 3',5'-monophosphate signaling in caveolae.
    Schwencke C; Yamamoto M; Okumura S; Toya Y; Kim SJ; Ishikawa Y
    Mol Endocrinol; 1999 Jul; 13(7):1061-70. PubMed ID: 10406458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desensitization of human renal D1 dopamine receptors by G protein-coupled receptor kinase 4.
    Watanabe H; Xu J; Bengra C; Jose PA; Felder RA
    Kidney Int; 2002 Sep; 62(3):790-8. PubMed ID: 12164861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D1 dopamine receptor hyperphosphorylation in renal proximal tubules in hypertension.
    Yu P; Asico LD; Luo Y; Andrews P; Eisner GM; Hopfer U; Felder RA; Jose PA
    Kidney Int; 2006 Sep; 70(6):1072-9. PubMed ID: 16850019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine recruits D1A receptors to Na-K-ATPase-rich caveolar plasma membranes in rat renal proximal tubules.
    Trivedi M; Narkar VA; Hussain T; Lokhandwala MF
    Am J Physiol Renal Physiol; 2004 Nov; 287(5):F921-31. PubMed ID: 15265765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine D1 and D5 receptors differentially regulate oxidative stress through paraoxonase 2 in kidney cells.
    Yang S; Yang Y; Yu P; Yang J; Jiang X; Villar VA; Sibley DR; Jose PA; Zeng C
    Free Radic Res; 2015 Apr; 49(4):397-410. PubMed ID: 25740199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C1 and C2 domains target human type 6 adenylyl cyclase to lipid rafts and caveolae.
    Thangavel M; Liu X; Sun SQ; Kaminsky J; Ostrom RS
    Cell Signal; 2009 Feb; 21(2):301-8. PubMed ID: 19007881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for the study of signaling molecules in membrane lipid rafts and caveolae.
    Ostrom RS; Insel PA
    Methods Mol Biol; 2006; 332():181-91. PubMed ID: 16878693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agonist-induced translocation of the kinin B(1) receptor to caveolae-related rafts.
    Sabourin T; Bastien L; Bachvarov DR; Marceau F
    Mol Pharmacol; 2002 Mar; 61(3):546-53. PubMed ID: 11854434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterol carrier protein-2 directly interacts with caveolin-1 in vitro and in vivo.
    Zhou M; Parr RD; Petrescu AD; Payne HR; Atshaves BP; Kier AB; Ball JM; Schroeder F
    Biochemistry; 2004 Jun; 43(23):7288-306. PubMed ID: 15182174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caveolin and GLT-1 gene expression is reciprocally regulated in primary astrocytes: association of GLT-1 with non-caveolar lipid rafts.
    Zschocke J; Bayatti N; Behl C
    Glia; 2005 Jan; 49(2):275-87. PubMed ID: 15494979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes.
    Head BP; Patel HH; Roth DM; Lai NC; Niesman IR; Farquhar MG; Insel PA
    J Biol Chem; 2005 Sep; 280(35):31036-44. PubMed ID: 15961389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway.
    Rybin VO; Xu X; Lisanti MP; Steinberg SF
    J Biol Chem; 2000 Dec; 275(52):41447-57. PubMed ID: 11006286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for the study of dopamine receptors within lipid rafts of kidney cells.
    Yu P; Villar VA; Jose PA
    Methods Mol Biol; 2013; 964():15-24. PubMed ID: 23296775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of the kappa opioid receptor in lipid rafts.
    Xu W; Yoon SI; Huang P; Wang Y; Chen C; Chong PL; Liu-Chen LY
    J Pharmacol Exp Ther; 2006 Jun; 317(3):1295-306. PubMed ID: 16505160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.