BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 15570001)

  • 1. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy.
    Lu Z; Yeh TK; Tsai M; Au JL; Wientjes MG
    Clin Cancer Res; 2004 Nov; 10(22):7677-84. PubMed ID: 15570001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paclitaxel incorporated in hydrophobically derivatized hyperbranched polyglycerols for intravesical bladder cancer therapy.
    Mugabe C; Hadaschik BA; Kainthan RK; Brooks DE; So AI; Gleave ME; Burt HM
    BJU Int; 2009 Apr; 103(7):978-86. PubMed ID: 19007363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dimethyl sulfoxide on bladder tissue penetration of intravesical paclitaxel.
    Chen D; Song D; Wientjes MG; Au JL
    Clin Cancer Res; 2003 Jan; 9(1):363-9. PubMed ID: 12538489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HYTAD1-p20: a new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer.
    Rosato A; Banzato A; De Luca G; Renier D; Bettella F; Pagano C; Esposito G; Zanovello P; Bassi P
    Urol Oncol; 2006; 24(3):207-15. PubMed ID: 16678050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cremophor reduces paclitaxel penetration into bladder wall during intravesical treatment.
    Knemeyer I; Wientjes MG; Au JL
    Cancer Chemother Pharmacol; 1999; 44(3):241-8. PubMed ID: 10453726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of paclitaxel released from bio-adhesive polymer microspheres on model superficial bladder cancer.
    Le Visage C; Rioux-Leclercq N; Haller M; Breton P; Malavaud B; Leong K
    J Urol; 2004 Mar; 171(3):1324-9. PubMed ID: 14767342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paclitaxel-loaded Pluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy.
    Oh KS; Song JY; Cho SH; Lee BS; Kim SY; Kim K; Jeon H; Kwon IC; Yuk SH
    J Control Release; 2010 Dec; 148(3):344-50. PubMed ID: 20797418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells.
    Gao C; Pan J; Lu W; Zhang M; Zhou L; Tian J
    Anticancer Drugs; 2009 Oct; 20(9):807-14. PubMed ID: 19696655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel self-assembling PEG-p-(CL-co-TMC) polymeric micelles as safe and effective delivery system for paclitaxel.
    Danhier F; Magotteaux N; Ucakar B; Lecouturier N; Brewster M; Préat V
    Eur J Pharm Biopharm; 2009 Oct; 73(2):230-8. PubMed ID: 19577643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paclitaxel gelatin nanoparticles for intravesical bladder cancer therapy.
    Lu Z; Yeh TK; Wang J; Chen L; Lyness G; Xin Y; Wientjes MG; Bergdall V; Couto G; Alvarez-Berger F; Kosarek CE; Au JL
    J Urol; 2011 Apr; 185(4):1478-83. PubMed ID: 21334664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The uptake of paclitaxel and docetaxel into ex vivo porcine bladder tissue from polymeric micelle formulations.
    Tsallas A; Jackson J; Burt H
    Cancer Chemother Pharmacol; 2011 Aug; 68(2):431-44. PubMed ID: 21069339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic population pharmacokinetics of total and unbound paclitaxel for a new nanodroplet formulation versus Taxol in cancer patients.
    Bulitta JB; Zhao P; Arnold RD; Kessler DR; Daifuku R; Pratt J; Luciano G; Hanauske AR; Gelderblom H; Awada A; Jusko WJ
    Cancer Chemother Pharmacol; 2009 May; 63(6):1049-63. PubMed ID: 18791718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of paclitaxel delivery system based on semi-solid lipid nanoparticles coated with poly (ethylene glycol).
    Wu L; Tang C; Yin C
    Pharmazie; 2010 Jul; 65(7):493-9. PubMed ID: 20662317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bladder tissue pharmacokinetics of intravesical taxol.
    Song D; Wientjes MG; Au JL
    Cancer Chemother Pharmacol; 1997; 40(4):285-92. PubMed ID: 9225946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bladder tissue pharmacokinetics and antitumor effect of intravesical 5-fluorouridine.
    Song D; Wientjes MG; Gan Y; Au JL
    Clin Cancer Res; 1997 Jun; 3(6):901-9. PubMed ID: 9815765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution.
    Saravanakumar G; Min KH; Min DS; Kim AY; Lee CM; Cho YW; Lee SC; Kim K; Jeong SY; Park K; Park JH; Kwon IC
    J Control Release; 2009 Dec; 140(3):210-7. PubMed ID: 19560497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel.
    Kim JH; Kim YS; Kim S; Park JH; Kim K; Choi K; Chung H; Jeong SY; Park RW; Kim IS; Kwon IC
    J Control Release; 2006 Mar; 111(1-2):228-34. PubMed ID: 16458988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.
    Soga O; van Nostrum CF; Fens M; Rijcken CJ; Schiffelers RM; Storm G; Hennink WE
    J Control Release; 2005 Mar; 103(2):341-53. PubMed ID: 15763618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system.
    Zhang C; Qineng P; Zhang H
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):69-75. PubMed ID: 15542343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles.
    Letchford K; Liggins R; Wasan KM; Burt H
    Eur J Pharm Biopharm; 2009 Feb; 71(2):196-206. PubMed ID: 18762253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.