These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 15570162)

  • 1. Correlated brain stem and cortical evoked responses to auditory tone change.
    Galbraith GC; Gutterson RP; Levy DS; Mussey JL; Sabatasso FA; Wasserman RI
    Neuroreport; 2004 Dec; 15(17):2613-6. PubMed ID: 15570162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators.
    Tichko P; Skoe E
    Hear Res; 2017 May; 348():1-15. PubMed ID: 28137699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex.
    Krishnan A; Suresh CH; Gandour JT
    Neuroscience; 2017 Mar; 346():52-63. PubMed ID: 28108254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds.
    Shahin AJ; Roberts LE; Miller LM; McDonald KL; Alain C
    Brain Topogr; 2007; 20(2):55-61. PubMed ID: 17899352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The auditory evoked magnetic fields to very high frequency tones.
    Fujioka T; Kakigi R; Gunji A; Takeshima Y
    Neuroscience; 2002; 112(2):367-81. PubMed ID: 12044454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive coding and pitch processing in the auditory cortex.
    Kumar S; Sedley W; Nourski KV; Kawasaki H; Oya H; Patterson RD; Howard MA; Friston KJ; Griffiths TD
    J Cogn Neurosci; 2011 Oct; 23(10):3084-94. PubMed ID: 21452943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topographic analysis of epidural pure-tone-evoked potentials in gerbil auditory cortex.
    Ohl FW; Scheich H; Freeman WJ
    J Neurophysiol; 2000 May; 83(5):3123-32. PubMed ID: 10805706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between brainstem, cortical and behavioral measures relevant to pitch salience in humans.
    Krishnan A; Bidelman GM; Smalt CJ; Ananthakrishnan S; Gandour JT
    Neuropsychologia; 2012 Oct; 50(12):2849-2859. PubMed ID: 22940428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human pitch perception is reflected in the timing of stimulus-related cortical activity.
    Patel AD; Balaban E
    Nat Neurosci; 2001 Aug; 4(8):839-44. PubMed ID: 11477431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta oscillatory power modulation reflects the predictability of pitch change.
    Chang A; Bosnyak DJ; Trainor LJ
    Cortex; 2018 Sep; 106():248-260. PubMed ID: 30053731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory cortical onset responses revisited. I. First-spike timing.
    Heil P
    J Neurophysiol; 1997 May; 77(5):2616-41. PubMed ID: 9163380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical processing of musical consonance: an evoked potential study.
    Itoh K; Suwazono S; Nakada T
    Neuroreport; 2003 Dec; 14(18):2303-6. PubMed ID: 14663180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma-band activity reflects the metric structure of rhythmic tone sequences.
    Snyder JS; Large EW
    Brain Res Cogn Brain Res; 2005 Jun; 24(1):117-26. PubMed ID: 15922164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range.
    Krishnan A; Gandour JT; Suresh CH
    Neuroscience; 2015 Sep; 303():433-45. PubMed ID: 26166727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory-evoked potentials to frequency increase and decrease of high- and low-frequency tones.
    Pratt H; Starr A; Michalewski HJ; Dimitrijevic A; Bleich N; Mittelman N
    Clin Neurophysiol; 2009 Feb; 120(2):360-73. PubMed ID: 19070543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensity changes in a continuous tone: auditory cortical potentials comparison with frequency changes.
    Dimitrijevic A; Lolli B; Michalewski HJ; Pratt H; Zeng FG; Starr A
    Clin Neurophysiol; 2009 Feb; 120(2):374-83. PubMed ID: 19112047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the binaural auditory filter in the human brain.
    Soeta Y; Nakagawa S
    Neuroreport; 2007 Dec; 18(18):1939-43. PubMed ID: 18007191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.
    Slugocki C; Bosnyak D; Trainor LJ
    Hear Res; 2017 Mar; 345():30-42. PubMed ID: 28043881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence.
    Shiga T; Althen H; Cornella M; Zarnowiec K; Yabe H; Escera C
    PLoS One; 2015; 10(9):e0136794. PubMed ID: 26348628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.