BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15570469)

  • 1. Gene expression during formation of earlywood and latewood in loblolly pine: expression profiles of 350 genes.
    Egertsdotter U; van Zyl LM; MacKay J; Peter G; Kirst M; Clark C; Whetten R; Sederoff R
    Plant Biol (Stuttg); 2004 Nov; 6(6):654-63. PubMed ID: 15570469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal variation in gene expression for loblolly pines (Pinus taeda) from different geographical regions.
    Yang SH; Loopstra CA
    Tree Physiol; 2005 Aug; 25(8):1063-73. PubMed ID: 15929937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate-related genes and cell wall biosynthesis in vascular tissues of loblolly pine (Pinus taeda).
    Nairn CJ; Lennon DM; Wood-Jones A; Nairn AV; Dean JF
    Tree Physiol; 2008 Jul; 28(7):1099-110. PubMed ID: 18450574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don.
    Li X; Wu HX; Dillon SK; Southerton SG
    BMC Genomics; 2009 Jan; 10():41. PubMed ID: 19159482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics.
    Li X; Wu HX; Southerton SG
    BMC Genomics; 2011 Oct; 12():480. PubMed ID: 21962175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata.
    Li X; Wu HX; Southerton SG
    New Phytol; 2010 Aug; 187(3):764-76. PubMed ID: 20561208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda).
    Lorenz WW; Dean JF
    Tree Physiol; 2002 Apr; 22(5):301-10. PubMed ID: 11960754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale statistical analysis of secondary xylem ESTs in pine.
    Pavy N; Laroche J; Bousquet J; Mackay J
    Plant Mol Biol; 2005 Jan; 57(2):203-24. PubMed ID: 15821878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wood formation from the base to the crown in Pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression.
    Cato S; McMillan L; Donaldson L; Richardson T; Echt C; Gardner R
    Plant Mol Biol; 2006 Mar; 60(4):565-81. PubMed ID: 16525892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms.
    Palle SR; Seeve CM; Eckert AJ; Wegrzyn JL; Neale DB; Loopstra CA
    Tree Physiol; 2013 Jul; 33(7):763-74. PubMed ID: 23933831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACC oxidase genes expressed in the wood-forming tissues of loblolly pine (Pinus taeda L.) include a pair of nearly identical paralogs (NIPs).
    Yuan S; Wang Y; Dean JF
    Gene; 2010 Mar; 453(1-2):24-36. PubMed ID: 20053371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association genetics in Pinus taeda L. I. Wood property traits.
    González-Martínez SC; Wheeler NC; Ersoz E; Nelson CD; Neale DB
    Genetics; 2007 Jan; 175(1):399-409. PubMed ID: 17110498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a 1-aminocyclopropane-1-carboxylate synthase gene from loblolly pine (Pinus taeda L.).
    Barnes JR; Lorenz WW; Dean JF
    Gene; 2008 Apr; 413(1-2):18-31. PubMed ID: 18328643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomics and cell wall biosynthesis in loblolly pine.
    Whetten R; Sun YH; Zhang Y; Sederoff R
    Plant Mol Biol; 2001 Sep; 47(1-2):275-91. PubMed ID: 11554476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda).
    Quinn CR; Iriyama R; Fernando DD
    Plant Reprod; 2014 Jun; 27(2):69-78. PubMed ID: 24664256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.).
    Lorenz WW; Alba R; Yu YS; Bordeaux JM; Simões M; Dean JF
    BMC Genomics; 2011 May; 12():264. PubMed ID: 21609476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the genetic basis of gene transcript abundance and metabolite levels in loblolly pine (Pinus taeda L.) using association mapping and network construction.
    Lu M; Seeve CM; Loopstra CA; Krutovsky KV
    BMC Genet; 2018 Nov; 19(1):100. PubMed ID: 30400815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural differences of cell walls in earlywood and latewood of
    Liszka A; Wightman R; Latowski D; Bourdon M; Krogh KBRM; Pietrzykowski M; Lyczakowski JJ
    Front Plant Sci; 2023; 14():1283093. PubMed ID: 38148867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis.
    Perera D; Magbanua ZV; Thummasuwan S; Mukherjee D; Arick M; Chouvarine P; Nairn CJ; Schmutz J; Grimwood J; Dean JFD; Peterson DG
    Gene; 2018 Jul; 663():165-177. PubMed ID: 29655895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of conserved core xylem gene sets: conifer cDNA microarray development, transcript profiling and computational analyses.
    Pavy N; Boyle B; Nelson C; Paule C; Giguère I; Caron S; Parsons LS; Dallaire N; Bedon F; Bérubé H; Cooke J; Mackay J
    New Phytol; 2008; 180(4):766-86. PubMed ID: 18811621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.