These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 15570570)
1. Further studies on the fragmentation of protonated ions of peptides containing aspartic acid, glutamic acid, cysteine sulfinic acid, and cysteine sulfonic acid. Men L; Wang Y Rapid Commun Mass Spectrom; 2005; 19(1):23-30. PubMed ID: 15570570 [TBL] [Abstract][Full Text] [Related]
2. Fragmentation of the deprotonated ions of peptides containing cysteine, cysteine sulfinic acid, cysteine sulfonic acid, aspartic acid, and glutamic acid. Men L; Wang Y Rapid Commun Mass Spectrom; 2006; 20(5):777-84. PubMed ID: 16470564 [TBL] [Abstract][Full Text] [Related]
3. Fragmentation of protonated ions of peptides containing cysteine, cysteine sulfinic acid, and cysteine sulfonic acid. Wang Y; Vivekananda S; Men L; Zhang Q J Am Soc Mass Spectrom; 2004 May; 15(5):697-702. PubMed ID: 15121199 [TBL] [Abstract][Full Text] [Related]
4. Atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry of sulfonic acid derivatized tryptic peptides. Keough T; Lacey MP; Strife RJ Rapid Commun Mass Spectrom; 2001; 15(23):2227-39. PubMed ID: 11746890 [TBL] [Abstract][Full Text] [Related]
5. Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides. Gu C; Tsaprailis G; Breci L; Wysocki VH Anal Chem; 2000 Dec; 72(23):5804-13. PubMed ID: 11128940 [TBL] [Abstract][Full Text] [Related]
6. Fragmentation reactions of protonated peptides containing glutamine or glutamic acid. Harrison AG J Mass Spectrom; 2003 Feb; 38(2):174-87. PubMed ID: 12577284 [TBL] [Abstract][Full Text] [Related]
7. Negative ion fragmentations of deprotonated peptides: backbone cleavages directed through both Asp and Glu. Brinkworth CS; Dua S; McAnoy AM; Bowie JH Rapid Commun Mass Spectrom; 2001; 15(20):1965-73. PubMed ID: 11596143 [TBL] [Abstract][Full Text] [Related]
8. Competitive formation of b(2) and c(2)-H2O ions from b(3) ions containing Asp residue during tandem mass spectrometry: the influence of neighboring Arg. Guo M; Guo C; Pan Y Amino Acids; 2014 Aug; 46(8):1939-46. PubMed ID: 24788991 [TBL] [Abstract][Full Text] [Related]
9. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications. Paulech J; Liddy KA; Engholm-Keller K; White MY; Cordwell SJ Mol Cell Proteomics; 2015 Mar; 14(3):609-20. PubMed ID: 25561502 [TBL] [Abstract][Full Text] [Related]
10. Identification of degradation products of aspartyl tripeptides by capillary electrophoresis-tandem mass spectrometry. De Boni S; Neusüss C; Pelzing M; Scriba GK Electrophoresis; 2003 Mar; 24(5):874-82. PubMed ID: 12627450 [TBL] [Abstract][Full Text] [Related]
11. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation. Lioe H; Laskin J; Reid GE; O'Hair RA J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758 [TBL] [Abstract][Full Text] [Related]
12. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus. Li Z; Yalcin T; Cassady CJ J Mass Spectrom; 2006 Jul; 41(7):939-49. PubMed ID: 16810639 [TBL] [Abstract][Full Text] [Related]
13. Cyclization and rearrangement reactions of a(n) fragment ions of protonated peptides. Bythell BJ; Maître P; Paizs B J Am Chem Soc; 2010 Oct; 132(42):14766-79. PubMed ID: 20925356 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and conformational preferences of peptides and proteins with cysteine sulfonic acid. Bhatt MR; Zondlo NJ Org Biomol Chem; 2023 Mar; 21(13):2779-2800. PubMed ID: 36920119 [TBL] [Abstract][Full Text] [Related]
15. A novel salt bridge mechanism highlights the need for nonmobile proton conditions to promote disulfide bond cleavage in protonated peptides under low-energy collisional activation. Lioe H; O'Hair RA J Am Soc Mass Spectrom; 2007 Jun; 18(6):1109-23. PubMed ID: 17462910 [TBL] [Abstract][Full Text] [Related]
16. Five-membered ring formation in unimolecular reactions of peptides: a key structural element controlling low-energy collision-induced dissociation of peptides. Schlosser A; Lehmann WD J Mass Spectrom; 2000 Dec; 35(12):1382-90. PubMed ID: 11180628 [TBL] [Abstract][Full Text] [Related]
17. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry. Atik AE; Guray MZ; Yalcin T J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1047():75-83. PubMed ID: 28063777 [TBL] [Abstract][Full Text] [Related]
18. Fragmentations of [M-H]- anions of peptides containing Ser sulfate. A joint experimental and theoretical study. Tran TT; Wang T; Hack S; Bowie JH Rapid Commun Mass Spectrom; 2013 Nov; 27(21):2287-96. PubMed ID: 24097384 [TBL] [Abstract][Full Text] [Related]
19. Glutamine deamidation: differentiation of glutamic acid and gamma-glutamic acid in peptides by electron capture dissociation. Li X; Lin C; O'Connor PB Anal Chem; 2010 May; 82(9):3606-15. PubMed ID: 20373761 [TBL] [Abstract][Full Text] [Related]
20. Differentiating alpha- and beta-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry. González LJ; Shimizu T; Satomi Y; Betancourt L; Besada V; Padrón G; Orlando R; Shirasawa T; Shimonishi Y; Takao T Rapid Commun Mass Spectrom; 2000; 14(22):2092-102. PubMed ID: 11114015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]