These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1557064)

  • 1. Regional changes in 2-deoxyglucose uptake associated with neuroleptic-induced tardive dyskinesia in the Cebus monkey.
    Mitchell IJ; Crossman AR; Liminga U; Andren P; Gunne LM
    Mov Disord; 1992; 7(1):32-7. PubMed ID: 1557064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental tardive dyskinesia.
    Gunne LM; Häggström JE
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):48-50. PubMed ID: 2858481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis.
    Gunne LM; Häggström JE; Sjöquist B
    Nature; 1984 May 24-30; 309(5966):347-9. PubMed ID: 6727989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional (14C) 2-deoxyglucose uptake during vibrissae movements evoked by rat motor cortex stimulation.
    Sharp FR; Evans K
    J Comp Neurol; 1982 Jul; 208(3):255-87. PubMed ID: 7119161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A monkey model of tardive dyskinesia (TD): evidence that reversible TD may turn into irreversible TD.
    Kovacic B; Domino EF
    J Clin Psychopharmacol; 1982 Oct; 2(5):305-7. PubMed ID: 6890075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 2-deoxyglucose study of the effects of dopamine agonists on the parkinsonian primate brain. Implications for the neural mechanisms that mediate dopamine agonist-induced dyskinesia.
    Mitchell IJ; Boyce S; Sambrook MA; Crossman AR
    Brain; 1992 Jun; 115 ( Pt 3)():809-24. PubMed ID: 1628204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [3H]-2-deoxyglucose uptake study in mutant dystonic hamsters: abnormalities in discrete brain regions of the motor system.
    Richter A; Brotchie JM; Crossman AR; Löscher W
    Mov Disord; 1998 Jul; 13(4):718-25. PubMed ID: 9686781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropeptide changes in a primate model (Cebus apella) for tardive dyskinesia.
    Johansson PE; Terenius L; Häggström JE; Gunne L
    Neuroscience; 1990; 37(2):563-7. PubMed ID: 1723515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the subthalamic nucleus in experimental chorea. Evidence from 2-deoxyglucose metabolic mapping and horseradish peroxidase tracing studies.
    Mitchell IJ; Jackson A; Sambrook MA; Crossman AR
    Brain; 1989 Dec; 112 ( Pt 6)():1533-48. PubMed ID: 2597995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanisms of dystonia: evidence from a 2-deoxyglucose uptake study in a primate model of dopamine agonist-induced dystonia.
    Mitchell IJ; Luquin R; Boyce S; Clarke CE; Robertson RG; Sambrook MA; Crossman AR
    Mov Disord; 1990; 5(1):49-54. PubMed ID: 2296259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural mechanisms in disorders of movement.
    Crossman AR
    Comp Biochem Physiol A Comp Physiol; 1989; 93(1):141-9. PubMed ID: 2568216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sagittal cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclature of the motor-related nuclei validated by observations on their connectivity.
    Ilinsky IA; Kultas-Ilinsky K
    J Comp Neurol; 1987 Aug; 262(3):331-64. PubMed ID: 2821085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcortical changes in the regional uptake of [3H]-2-deoxyglucose in the brain of the monkey during experimental choreiform dyskinesia elicited by injection of a gamma-aminobutyric acid antagonist into the subthalamic nucleus.
    Mitchell IJ; Sambrook MA; Crossman AR
    Brain; 1985 Jun; 108 ( Pt 2)():405-22. PubMed ID: 4005529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
    Mitchell IJ; Clarke CE; Boyce S; Robertson RG; Peggs D; Sambrook MA; Crossman AR
    Neuroscience; 1989; 32(1):213-26. PubMed ID: 2586750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a primate model for tardive dyskinesia.
    Bárány S; Häggström JE; Gunne LM
    Acta Pharmacol Toxicol (Copenh); 1983 Feb; 52(2):86-9. PubMed ID: 6846025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study.
    François C; Grabli D; McCairn K; Jan C; Karachi C; Hirsch EC; Féger J; Tremblay L
    Brain; 2004 Sep; 127(Pt 9):2055-70. PubMed ID: 15292054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurobiochemical changes in tardive dyskinesia.
    Gunne LM; Häggström JE; Johansson P; Levin ED; Terenius L
    Encephale; 1988 Sep; 14 Spec No():167-73. PubMed ID: 2463901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An animal model for coexisting tardive dyskinesia and tardive parkinsonism: a glutamate hypothesis for tardive dyskinesia.
    Gunne LM; Andrén PE
    Clin Neuropharmacol; 1993 Feb; 16(1):90-5. PubMed ID: 8093682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subthalamic nucleus of the monkey: connections and immunocytochemical features of afferents.
    Carpenter MB; Jayaraman A
    J Hirnforsch; 1990; 31(5):653-68. PubMed ID: 1707079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced glutamate decarboxylase activity in the subthalamic nucleus in patients with tardive dyskinesia.
    Andersson U; Häggström JE; Levin ED; Bondesson U; Valverius M; Gunne LM
    Mov Disord; 1989; 4(1):37-46. PubMed ID: 2927401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.