These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 15570977)
1. Hydrogen-bonded nanotubes as a model for DNA transcription. Sajfert V; Dajić R; Tosić B J Nanosci Nanotechnol; 2004 Sep; 4(7):886-90. PubMed ID: 15570977 [TBL] [Abstract][Full Text] [Related]
2. Enzyme-Driven Assembly and Disassembly of Hybrid DNA-RNA Nanotubes. Agarwal S; Franco E J Am Chem Soc; 2019 May; 141(19):7831-7841. PubMed ID: 31042366 [TBL] [Abstract][Full Text] [Related]
4. Nanoscale structure and microscale stiffness of DNA nanotubes. Schiffels D; Liedl T; Fygenson DK ACS Nano; 2013 Aug; 7(8):6700-10. PubMed ID: 23879368 [TBL] [Abstract][Full Text] [Related]
5. Propensities for loop structures of RNA & DNA backbones. Paladino A; Zangi R Biophys Chem; 2013; 180-181():110-8. PubMed ID: 23933331 [TBL] [Abstract][Full Text] [Related]
6. Small circular DNA molecules act as rigid motifs to build DNA nanotubes. Zheng H; Xiao M; Yan Q; Ma Y; Xiao SJ J Am Chem Soc; 2014 Jul; 136(29):10194-7. PubMed ID: 25000226 [TBL] [Abstract][Full Text] [Related]
7. Design and characterization of programmable DNA nanotubes. Rothemund PW; Ekani-Nkodo A; Papadakis N; Kumar A; Fygenson DK; Winfree E J Am Chem Soc; 2004 Dec; 126(50):16344-52. PubMed ID: 15600335 [TBL] [Abstract][Full Text] [Related]
8. Bubble propagation in a helicoidal molecular chain. Campa A Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021901. PubMed ID: 11308512 [TBL] [Abstract][Full Text] [Related]
9. Capture and manipulation of hybrid DNAs by carbon nanotube bundles. Li Z; Yang W Nanotechnology; 2010 May; 21(19):195301. PubMed ID: 20400825 [TBL] [Abstract][Full Text] [Related]
10. Self-assembly of metal-DNA triangles and DNA nanotubes with synthetic junctions. Yang H; Lo PK; McLaughlin CK; Hamblin GD; Aldaye FA; Sleiman HF Methods Mol Biol; 2011; 749():33-47. PubMed ID: 21674363 [TBL] [Abstract][Full Text] [Related]
11. Prediction of hybridization and melting for double-stranded nucleic acids. Dimitrov RA; Zuker M Biophys J; 2004 Jul; 87(1):215-26. PubMed ID: 15240459 [TBL] [Abstract][Full Text] [Related]
12. Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. Wang T; Schiffels D; Cuesta SM; Fygenson DK; Seeman NC J Am Chem Soc; 2012 Jan; 134(3):1606-16. PubMed ID: 22239727 [TBL] [Abstract][Full Text] [Related]
13. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs. Takezawa Y; Shionoya M Acc Chem Res; 2012 Dec; 45(12):2066-76. PubMed ID: 22452649 [TBL] [Abstract][Full Text] [Related]
14. Self-assembly of chiral DNA nanotubes. Mitchell JC; Harris JR; Malo J; Bath J; Turberfield AJ J Am Chem Soc; 2004 Dec; 126(50):16342-3. PubMed ID: 15600334 [TBL] [Abstract][Full Text] [Related]
15. The dynamics of intermittent strand separation in double-stranded DNA. Chatterjee D; Chaudhury S; Cherayil BJ J Chem Phys; 2007 Oct; 127(15):155104. PubMed ID: 17949220 [TBL] [Abstract][Full Text] [Related]
16. A model for separation and melting of deoxyribonucleic acid in replication and transcription processes. Xiao-Feng P; Yuan-Ping F J Biomol Struct Dyn; 2008 Feb; 25(4):435-51. PubMed ID: 18092838 [TBL] [Abstract][Full Text] [Related]
17. Local destabilisation of a DNA double helix by a T--T wobble pair. Cornelis AG; Haasnoot JH; den Hartog JF; de Rooij M; van Boom JH; Cornelis A Nature; 1979 Sep; 281(5728):235-6. PubMed ID: 481593 [TBL] [Abstract][Full Text] [Related]
18. Vibrational fluctuations of hydrogen bonds in a DNA double helix with nonuniform base pairs. Feng Y; Prohofsky EW Biophys J; 1990 Mar; 57(3):547-53. PubMed ID: 2306500 [TBL] [Abstract][Full Text] [Related]
19. Atomic structures of RNA nanotubes and their comparison with DNA nanotubes. Naskar S; Joshi H; Chakraborty B; Seeman NC; Maiti PK Nanoscale; 2019 Aug; 11(31):14863-14878. PubMed ID: 31355845 [TBL] [Abstract][Full Text] [Related]