BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15571375)

  • 1. Microarray platform for profiling enzyme activities in complex proteomes.
    Sieber SA; Mondala TS; Head SR; Cravatt BF
    J Am Chem Soc; 2004 Dec; 126(48):15640-1. PubMed ID: 15571375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a general method for mapping sites of probe modification in proteomes.
    Weerapana E; Speers AE; Cravatt BF
    Nat Protoc; 2007; 2(6):1414-25. PubMed ID: 17545978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping enzyme active sites in complex proteomes.
    Adam GC; Burbaum J; Kozarich JW; Patricelli MP; Cravatt BF
    J Am Chem Soc; 2004 Feb; 126(5):1363-8. PubMed ID: 14759193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling serine hydrolase activities in complex proteomes.
    Kidd D; Liu Y; Cravatt BF
    Biochemistry; 2001 Apr; 40(13):4005-15. PubMed ID: 11300781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes.
    Patricelli MP; Giang DK; Stamp LM; Burbaum JJ
    Proteomics; 2001 Sep; 1(9):1067-71. PubMed ID: 11990500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DIGE-ABPP by click chemistry: pairwise comparison of serine hydrolase activities from the apoplast of infected plants.
    Hong TN; van der Hoorn RA
    Methods Mol Biol; 2014; 1127():183-94. PubMed ID: 24643562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of activity-based protein profiling to study enzyme function in adipocytes.
    Galmozzi A; Dominguez E; Cravatt BF; Saez E
    Methods Enzymol; 2014; 538():151-69. PubMed ID: 24529438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-based proteomics: enzymatic activity profiling in complex proteomes.
    Schmidinger H; Hermetter A; Birner-Gruenberger R
    Amino Acids; 2006 Jun; 30(4):333-50. PubMed ID: 16773240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes.
    Wingren C; Steinhauer C; Ingvarsson J; Persson E; Larsson K; Borrebaeck CA
    Proteomics; 2005 Apr; 5(5):1281-91. PubMed ID: 15732136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Multiplexed Activity-Based Protein Profiling Assay to Evaluate Activity of Endocannabinoid Hydrolase Inhibitors.
    Janssen APA; van der Vliet D; Bakker AT; Jiang M; Grimm SH; Campiani G; Butini S; van der Stelt M
    ACS Chem Biol; 2018 Sep; 13(9):2406-2413. PubMed ID: 30199617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of recombinant antibody microarrays for complex proteome analysis: choice of sample labeling-tag and solid support.
    Wingren C; Ingvarsson J; Dexlin L; Szul D; Borrebaeck CA
    Proteomics; 2007 Sep; 7(17):3055-65. PubMed ID: 17787036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils.
    Aaltonen N; Singha PK; Jakupović H; Wirth T; Samaranayake H; Pasonen-Seppänen S; Rilla K; Varjosalo M; Edgington-Mitchell LE; Kasperkiewicz P; Drag M; Kälvälä S; Moisio E; Savinainen JR; Laitinen JT
    Biol Proced Online; 2020; 22():6. PubMed ID: 32190011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays.
    Gosalia DN; Salisbury CM; Maly DJ; Ellman JA; Diamond SL
    Proteomics; 2005 Apr; 5(5):1292-8. PubMed ID: 15742319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-based Protein Profiling of Serine Hydrolase Superfamily Enzymes.
    Dolui AK; Latha M; Vijayaraj P
    Bio Protoc; 2022 Mar; 12(6):e4356. PubMed ID: 35434188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ABPP methodology: introduction and overview.
    Nodwell MB; Sieber SA
    Top Curr Chem; 2012; 324():1-41. PubMed ID: 22160389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-based probes that target functional subclasses of phospholipases in proteomes.
    Tully SE; Cravatt BF
    J Am Chem Soc; 2010 Mar; 132(10):3264-5. PubMed ID: 20178358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current developments in activity-based protein profiling.
    Willems LI; Overkleeft HS; van Kasteren SI
    Bioconjug Chem; 2014 Jul; 25(7):1181-91. PubMed ID: 24946272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody microarrays as an experimental platform for the analysis of signal transduction networks.
    Korf U; Henjes F; Schmidt C; Tresch A; Mannsperger H; Löbke C; Beissbarth T; Poustka A
    Adv Biochem Eng Biotechnol; 2008; 110():153-75. PubMed ID: 18528667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitor Discovery by Convolution ABPP.
    Chandrasekar B; Hong TN; van der Hoorn RA
    Methods Mol Biol; 2017; 1491():47-56. PubMed ID: 27778280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes.
    Adam GC; Sorensen EJ; Cravatt BF
    Mol Cell Proteomics; 2002 Oct; 1(10):828-35. PubMed ID: 12438565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.