These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 15571416)

  • 21. Fluorescence lifetime probe for solvent microviscosity utilizing anilinonaphthalene sulfonate.
    Someya Y; Yui H
    Anal Chem; 2010 Jul; 82(13):5470-6. PubMed ID: 20524653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ratiometric determination of Hg2+ ions based on simple molecular motifs of pyrene and dioxaoctanediamide.
    Kim JS; Choi MG; Song KC; No KT; Ahn S; Chang SK
    Org Lett; 2007 Mar; 9(6):1129-32. PubMed ID: 17309275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembly of beta-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering.
    Bonini M; Rossi S; Karlsson G; Almgren M; Lo Nostro P; Baglioni P
    Langmuir; 2006 Feb; 22(4):1478-84. PubMed ID: 16460065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembly properties of some chiral N-palmitoyl amino acid surfactants in aqueous solution.
    Gerova M; Rodrigues F; Lamère JF; Dobrev A; Fery-Forgues S
    J Colloid Interface Sci; 2008 Mar; 319(2):526-33. PubMed ID: 18155019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of urea on self-organization of sodium N-(11-acrylamidoundecanoyl)-L-valinate in water.
    Roy S; Dey J
    J Colloid Interface Sci; 2005 Oct; 290(2):526-32. PubMed ID: 15961098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsically disordered structure of Bacillus pasteurii UreG as revealed by steady-state and time-resolved fluorescence spectroscopy.
    Neyroz P; Zambelli B; Ciurli S
    Biochemistry; 2006 Jul; 45(29):8918-30. PubMed ID: 16846235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium.
    Boucard N; Viton C; Domard A
    Biomacromolecules; 2005; 6(6):3227-37. PubMed ID: 16283750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers.
    Kimura M; Fukumoto K; Watanabe J; Takai M; Ishihara K
    Biomaterials; 2005 Dec; 26(34):6853-62. PubMed ID: 15978662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the micellization kinetics of pyrene end-labeled diblock copolymer via a combination of stopped-flow light-scattering and fluorescence techniques.
    Zhang J; Li Y; Armes SP; Liu S
    J Phys Chem B; 2007 Oct; 111(42):12111-8. PubMed ID: 17918888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring sol-to-gel transitions via fluorescence lifetime determination using viscosity sensitive fluorescent probes.
    Hungerford G; Allison A; McLoskey D; Kuimova MK; Yahioglu G; Suhling K
    J Phys Chem B; 2009 Sep; 113(35):12067-74. PubMed ID: 19708714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12.
    Shome A; Debnath S; Das PK
    Langmuir; 2008 Apr; 24(8):4280-8. PubMed ID: 18324868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrafast torsional dynamics of protein binding dye thioflavin-T in nanoconfined water pool.
    Singh PK; Kumbhakar M; Pal H; Nath S
    J Phys Chem B; 2009 Jun; 113(25):8532-8. PubMed ID: 19485371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Online fluorescent dye detection method for the characterization of immunoglobulin G aggregation by size exclusion chromatography and asymmetrical flow field flow fractionation.
    Hawe A; Friess W; Sutter M; Jiskoot W
    Anal Biochem; 2008 Jul; 378(2):115-22. PubMed ID: 18455994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quenching and dequenching of pyrene fluorescence by nucleotide monophosphates in cationic micelles.
    Lopez F; Cuomo F; Ceglie A; Ambrosone L; Palazzo G
    J Phys Chem B; 2008 Jun; 112(24):7338-44. PubMed ID: 18503268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of water-soluble dendrimers into thermoreversible hydrogels and macroscopic fibers.
    El Ghzaoui A; Gauffre F; Caminade AM; Majoral JP; Lannibois-Drean H
    Langmuir; 2004 Oct; 20(21):9348-53. PubMed ID: 15461528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Location of spectroscopic probes in self-aggregating assemblies. II. The location of pyrene and other probes in sodium dodecyl sulfate micelles.
    Lebedeva N; Ranganathan R; Bales BL
    J Phys Chem B; 2007 May; 111(21):5781-93. PubMed ID: 17488113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and gelation mechanism of tunable guanosine-based supramolecular hydrogels.
    Li Z; Buerkle LE; Orseno MR; Streletzky KA; Seifert S; Jamieson AM; Rowan SJ
    Langmuir; 2010 Jun; 26(12):10093-101. PubMed ID: 20384308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water gelation of an amino acid-based amphiphile.
    Das D; Dasgupta A; Roy S; Mitra RN; Debnath S; Das PK
    Chemistry; 2006 Jun; 12(19):5068-74. PubMed ID: 16622886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.