These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 15571715)

  • 21. Length dependence of RNA-RNA annealing.
    Patzel V; Sczakiel G
    J Mol Biol; 1999 Dec; 294(5):1127-34. PubMed ID: 10600371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric RNA duplexes mediate RNA interference in mammalian cells.
    Sun X; Rogoff HA; Li CJ
    Nat Biotechnol; 2008 Dec; 26(12):1379-82. PubMed ID: 19029911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positional effects and strand preference of RNA interference against hepatitis C virus target sequences.
    Smith RM; Smolic R; Volarevic M; Wu GY
    J Viral Hepat; 2007 Mar; 14(3):194-212. PubMed ID: 17305886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppression of ICAM-1 in human venous endothelial cells by small interfering RNAs.
    Walker T; Wendel HP; Tetzloff L; Heidenreich O; Ziemer G
    Eur J Cardiothorac Surg; 2005 Dec; 28(6):816-20. PubMed ID: 16275116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissecting RNA-interference pathway with small molecules.
    Chiu YL; Dinesh CU; Chu CY; Ali A; Brown KM; Cao H; Rana TM
    Chem Biol; 2005 Jun; 12(6):643-8. PubMed ID: 15975509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery.
    Santosh M; Panigrahi S; Bhattacharyya D; Sood AK; Maiti PK
    J Chem Phys; 2012 Feb; 136(6):065106. PubMed ID: 22360226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The association of complementary ribonucleic acids can be strongly increased without lowering Arrhenius activation energies or significantly altering structures.
    Nedbal W; Homann M; Sczakiel G
    Biochemistry; 1997 Nov; 36(44):13552-7. PubMed ID: 9354623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unraveling siRNA unzipping kinetics with graphene.
    Mogurampelly S; Panigrahi S; Bhattacharyya D; Sood AK; Maiti PK
    J Chem Phys; 2012 Aug; 137(5):054903. PubMed ID: 22894382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissociation of long-chain duplex RNA can occur via strand displacement in vitro: biological implications.
    Homann M; Nedbal W; Sczakiel G
    Nucleic Acids Res; 1996 Nov; 24(22):4395-400. PubMed ID: 8948629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of oligodiaminomannoses and analysis of their RNA duplex binding properties and their potential application as siRNA-based drugs.
    Iwata R; Doi A; Maeda Y; Wada T
    Org Biomol Chem; 2015 Sep; 13(36):9504-15. PubMed ID: 26256756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic analysis of the RNAi enzyme complex.
    Haley B; Zamore PD
    Nat Struct Mol Biol; 2004 Jul; 11(7):599-606. PubMed ID: 15170178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.
    Cobbs G
    BMC Bioinformatics; 2012 Aug; 13():203. PubMed ID: 22897900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorothioate-stimulated uptake of siRNA by mammalian cells: a novel route for delivery.
    Detzer A; Sczakiel G
    Curr Top Med Chem; 2009; 9(12):1109-16. PubMed ID: 19860711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Kinetic regularities of RNA synthesis. 4. Biologically determined models of RNA accumulation and the reverse problem].
    Tsarev OB; Shchuppe NG
    Biofizika; 1973; 18(3):553-5. PubMed ID: 4717787
    [No Abstract]   [Full Text] [Related]  

  • 35. Circular versus linear RNA topology: different modes of RNA-RNA interactions in vitro and in human cells.
    Petkovic S; Graff S; Feller N; Berghaus J; Ruppert VP; Dülfer J; Sczakiel G
    RNA Biol; 2021 Nov; 18(sup2):674-683. PubMed ID: 34839802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNAi revised--target mRNA-dependent enhancement of gene silencing.
    Dornseifer S; Willkomm S; Far RK; Liebschwager J; Beltsiou F; Frank K; Laufer SD; Martinetz T; Sczakiel G; Claussen JC; Restle T
    Nucleic Acids Res; 2015 Dec; 43(22):10623-32. PubMed ID: 26578554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation.
    Miller CL; Haas U; Diaz R; Leeper NJ; Kundu RK; Patlolla B; Assimes TL; Kaiser FJ; Perisic L; Hedin U; Maegdefessel L; Schunkert H; Erdmann J; Quertermous T; Sczakiel G
    PLoS Genet; 2014 Mar; 10(3):e1004263. PubMed ID: 24676100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strand antagonism in RNAi: an explanation of differences in potency between intracellularly expressed siRNA and shRNA.
    Jin X; Sun T; Zhao C; Zheng Y; Zhang Y; Cai W; He Q; Taira K; Zhang L; Zhou D
    Nucleic Acids Res; 2012 Feb; 40(4):1797-806. PubMed ID: 22039150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variables and strategies in development of therapeutic post-transcriptional gene silencing agents.
    Sullivan JM; Yau EH; Kolniak TA; Sheflin LG; Taggart RT; Abdelmaksoud HE
    J Ophthalmol; 2011; 2011():531380. PubMed ID: 21785698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method for detecting and preventing negative RNA interference in preparation of lentiviral vectors for siRNA delivery.
    Zhou D; Zhang J; Wang C; Bliesath JR; He Q; Yu D; Li-He Z; Wong-Staal F
    RNA; 2009 Apr; 15(4):732-40. PubMed ID: 19244361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.