These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 15571731)
1. Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Jeong DG; Kim SJ; Kim JH; Son JH; Park MR; Lim SM; Yoon TS; Ryu SE J Mol Biol; 2005 Jan; 345(2):401-13. PubMed ID: 15571731 [TBL] [Abstract][Full Text] [Related]
2. Structure of human PRL-3, the phosphatase associated with cancer metastasis. Kim KA; Song JS; Jee J; Sheen MR; Lee C; Lee TG; Ro S; Cho JM; Lee W; Yamazaki T; Jeon YH; Cheong C FEBS Lett; 2004 May; 565(1-3):181-7. PubMed ID: 15135076 [TBL] [Abstract][Full Text] [Related]
3. Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Sun JP; Wang WQ; Yang H; Liu S; Liang F; Fedorov AA; Almo SC; Zhang ZY Biochemistry; 2005 Sep; 44(36):12009-21. PubMed ID: 16142898 [TBL] [Abstract][Full Text] [Related]
4. Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Zeng Q; Hong W; Tan YH Biochem Biophys Res Commun; 1998 Mar; 244(2):421-7. PubMed ID: 9514946 [TBL] [Abstract][Full Text] [Related]
5. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site. Mustelin T; Tautz L; Page R J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275 [TBL] [Abstract][Full Text] [Related]
6. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Fiordalisi JJ; Keller PJ; Cox AD Cancer Res; 2006 Mar; 66(6):3153-61. PubMed ID: 16540666 [TBL] [Abstract][Full Text] [Related]
7. Structure of a novel ribosome-inactivating protein from a hemi-parasitic plant inhabiting the northwestern Himalayas. Mishra V; Ethayathulla AS; Sharma RS; Yadav S; Krauspenhaar R; Betzel C; Babu CR; Singh TP Acta Crystallogr D Biol Crystallogr; 2004 Dec; 60(Pt 12 Pt 2):2295-304. PubMed ID: 15583377 [TBL] [Abstract][Full Text] [Related]
8. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide. Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Stewart AE; Dowd S; Keyse SM; McDonald NQ Nat Struct Biol; 1999 Feb; 6(2):174-81. PubMed ID: 10048930 [TBL] [Abstract][Full Text] [Related]
10. 1.70 A X-ray structure of human apo kallikrein 1: structural changes upon peptide inhibitor/substrate binding. Laxmikanthan G; Blaber SI; Bernett MJ; Scarisbrick IA; Juliano MA; Blaber M Proteins; 2005 Mar; 58(4):802-14. PubMed ID: 15651049 [TBL] [Abstract][Full Text] [Related]
11. Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Grundner C; Ng HL; Alber T Structure; 2005 Nov; 13(11):1625-34. PubMed ID: 16271885 [TBL] [Abstract][Full Text] [Related]
12. cGMP-binding prepares PKG for substrate binding by disclosing the C-terminal domain. Alverdi V; Mazon H; Versluis C; Hemrika W; Esposito G; van den Heuvel R; Scholten A; Heck AJ J Mol Biol; 2008 Feb; 375(5):1380-93. PubMed ID: 18082764 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity. Kim SJ; Jeong DG; Yoon TS; Son JH; Cho SK; Ryu SE; Kim JH Proteins; 2007 Jan; 66(1):239-45. PubMed ID: 17044055 [TBL] [Abstract][Full Text] [Related]
14. Structure, modelling, and molecular dynamics studies of the inhibition of protein tyrosine phosphatase 1B by sulfotyrosine peptides. Glover NR; Tracey AS Biochem Cell Biol; 1999; 77(5):469-86. PubMed ID: 10593610 [TBL] [Abstract][Full Text] [Related]
15. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes. Lokanath NK; Pampa KJ; Takio K; Kunishima N J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Pseudomonas aeruginosa in its Apo and substrate-complexed forms reveals a fully open conformation. Yoon HJ; Kim HL; Mikami B; Suh SW J Mol Biol; 2005 Aug; 351(2):258-65. PubMed ID: 16009375 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of human protein tyrosine phosphatase 14 (PTPN14) at 1.65-A resolution. Barr AJ; Debreczeni JE; Eswaran J; Knapp S Proteins; 2006 Jun; 63(4):1132-6. PubMed ID: 16534812 [No Abstract] [Full Text] [Related]
18. Electrostatic evaluation of the signature motif (H/V)CX5R(S/T) in protein-tyrosine phosphatases. Peters GH; Frimurer TM; Olsen OH Biochemistry; 1998 Apr; 37(16):5383-93. PubMed ID: 9548920 [TBL] [Abstract][Full Text] [Related]
19. Structure of Escherichia coli tryptophanase. Ku SY; Yip P; Howell PL Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):814-23. PubMed ID: 16790938 [TBL] [Abstract][Full Text] [Related]
20. Biochemical characterization and crystal structure of a Dim1 family associated protein: Dim2. Simeoni F; Arvai A; Bello P; Gondeau C; Hopfner KP; Neyroz P; Heitz F; Tainer J; Divita G Biochemistry; 2005 Sep; 44(36):11997-2008. PubMed ID: 16142897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]