BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

647 related articles for article (PubMed ID: 15572043)

  • 21. O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide.
    Archer SL; Wu XC; Thébaud B; Moudgil R; Hashimoto K; Michelakis ED
    Biol Chem; 2004; 385(3-4):205-16. PubMed ID: 15134333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of O(2)-sensitive K(+) and Ca(2+) channels in the regulation of the pulmonary circulation: potential role of caveolae and implications for high altitude pulmonary edema.
    Murray F; Insel PA; Yuan JX
    Respir Physiol Neurobiol; 2006 Apr; 151(2-3):192-208. PubMed ID: 16364695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase.
    Archer SL; Reeve HL; Michelakis E; Puttagunta L; Waite R; Nelson DP; Dinauer MC; Weir EK
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7944-9. PubMed ID: 10393927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein kinases in vascular smooth muscle tone--role in the pulmonary vasculature and hypoxic pulmonary vasoconstriction.
    Ward JP; Knock GA; Snetkov VA; Aaronson PI
    Pharmacol Ther; 2004 Dec; 104(3):207-31. PubMed ID: 15556675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes.
    Archer SL; Souil E; Dinh-Xuan AT; Schremmer B; Mercier JC; El Yaagoubi A; Nguyen-Huu L; Reeve HL; Hampl V
    J Clin Invest; 1998 Jun; 101(11):2319-30. PubMed ID: 9616203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species as mediators of oxygen signaling during fetal-to-neonatal circulatory transition.
    Villamor E; Moreno L; Mohammed R; Pérez-Vizcaíno F; Cogolludo A
    Free Radic Biol Med; 2019 Oct; 142():82-96. PubMed ID: 30995535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Distribution of ion channels in pulmonary arterial smooth muscle cells and their roles in hypoxia pulmonary vasoconstriction].
    Hu Y; Ge RL
    Sheng Li Ke Xue Jin Zhan; 2006 Apr; 37(2):113-6. PubMed ID: 16850613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross Talk Between Mitochondrial Reactive Oxygen Species and Sarcoplasmic Reticulum Calcium in Pulmonary Arterial Smooth Muscle Cells.
    Song T; Zheng YM; Wang YX
    Adv Exp Med Biol; 2017; 967():289-298. PubMed ID: 29047093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of phosphatase and tensin homolog in hypoxic pulmonary vasoconstriction.
    Krauszman A; Mak TW; Szaszi K; Kuebler WM
    Cardiovasc Res; 2017 Jul; 113(8):869-878. PubMed ID: 28430879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing.
    Waypa GB; Chandel NS; Schumacker PT
    Circ Res; 2001 Jun; 88(12):1259-66. PubMed ID: 11420302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing.
    Michelakis ED; Archer SL; Weir EK
    Physiol Res; 1995; 44(6):361-7. PubMed ID: 8798271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypoxic pulmonary vasoconstriction.
    A Mark E
    Essays Biochem; 2007; 43():61-76. PubMed ID: 17705793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hypoxic pulmonary vasoconstriction: cyclic adenosine diphosphate-ribose, smooth muscle Ca(2+) stores and the endothelium.
    Evans AM; Dipp M
    Respir Physiol Neurobiol; 2002 Aug; 132(1):3-15. PubMed ID: 12126692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia.
    Weir EK; Olschewski A
    Cardiovasc Res; 2006 Sep; 71(4):630-41. PubMed ID: 16828723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox activation of intracellular calcium release channels (ryanodine receptors) in the sustained phase of hypoxia-induced pulmonary vasoconstriction.
    Du W; Frazier M; McMahon TJ; Eu JP
    Chest; 2005 Dec; 128(6 Suppl):556S-558S. PubMed ID: 16373824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor.
    Leach RM; Hill HM; Snetkov VA; Robertson TP; Ward JP
    J Physiol; 2001 Oct; 536(Pt 1):211-24. PubMed ID: 11579170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion channels, oxygen sensation and signal transduction in pulmonary arterial smooth muscle.
    Kozlowski RZ
    Cardiovasc Res; 1995 Sep; 30(3):318-25. PubMed ID: 7585821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of twin pore domain and other K+ channels in hypoxic pulmonary vasoconstriction.
    Gurney AM; Joshi S
    Novartis Found Symp; 2006; 272():218-28; discussion 228-33, 274-9. PubMed ID: 16686438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension.
    Bonnet S; Michelakis ED; Porter CJ; Andrade-Navarro MA; Thébaud B; Bonnet S; Haromy A; Harry G; Moudgil R; McMurtry MS; Weir EK; Archer SL
    Circulation; 2006 Jun; 113(22):2630-41. PubMed ID: 16735674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of mitochondrial KATP channel on voltage-gated K+ channel in 24 hour-hypoxic human pulmonary artery smooth muscle cells.
    Wang T; Zhang ZX; Xu YJ
    Chin Med J (Engl); 2005 Jan; 118(1):12-9. PubMed ID: 15642220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.