These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 15572060)

  • 1. A three-layer continuous model of porous media to describe the first phase of skin irritation.
    Bauer D; Grebe R; Ehrlacher A
    J Theor Biol; 2005 Feb; 232(3):347-62. PubMed ID: 15572060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First phase microcirculatory reaction to mechanical skin irritation: a three layer model of a compliant vascular tree.
    Bauer D; Grebe R; Ehrlacher A
    J Theor Biol; 2005 Jan; 232(2):249-60. PubMed ID: 15530494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method to model change in cutaneous blood flow due to mechanical skin irritation part I: comparison between experimental and numerical data.
    Bauer D; Grebe R; Ehrlacher A
    J Theor Biol; 2006 Feb; 238(3):575-87. PubMed ID: 16081107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method to model change in cutaneous blood flow due to mechanical skin irritation part II: parameter identification procedure.
    Bauer D; Grebe R; Ehrlacher A
    J Theor Biol; 2006 Feb; 238(3):588-96. PubMed ID: 16084530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors.
    Baish JW; Netti PA; Jain RK
    Microvasc Res; 1997 Mar; 53(2):128-41. PubMed ID: 9143544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of the circulation in the liver lobule.
    Bonfiglio A; Leungchavaphongse K; Repetto R; Siggers JH
    J Biomech Eng; 2010 Nov; 132(11):111011. PubMed ID: 21034152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modeling of fluid transport in tumors.
    Chapman SJ; Shipley RJ; Jawad R
    Bull Math Biol; 2008 Nov; 70(8):2334-57. PubMed ID: 18818972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of stent porosity on hemodynamics in a sidewall aneurysm model.
    Liou TM; Li YC
    J Biomech; 2008; 41(6):1174-83. PubMed ID: 18377914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature.
    Wu J; Xu S; Long Q; Collins MW; König CS; Zhao G; Jiang Y; Padhani AR
    J Biomech; 2008; 41(5):996-1004. PubMed ID: 18222455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies.
    McDougall SR; Anderson AR; Chaplain MA
    J Theor Biol; 2006 Aug; 241(3):564-89. PubMed ID: 16487543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels.
    Liu M; Yang J
    Microvasc Res; 2009 Jun; 78(1):14-9. PubMed ID: 19362568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia.
    Jung E
    Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model.
    Choi B; Kang NM; Nelson JS
    Microvasc Res; 2004 Sep; 68(2):143-6. PubMed ID: 15313124
    [No Abstract]   [Full Text] [Related]  

  • 17. On the principles of the vascular network branching.
    Gafiychuk VV; Lubashevsky IA
    J Theor Biol; 2001 Sep; 212(1):1-9. PubMed ID: 11527441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A technique to visualize wound bed microcirculation and the acute effect of negative pressure.
    Ichioka S; Watanabe H; Sekiya N; Shibata M; Nakatsuka T
    Wound Repair Regen; 2008; 16(3):460-5. PubMed ID: 18471264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models.
    Zhou C; Yue P; Feng JJ
    Ann Biomed Eng; 2007 May; 35(5):766-80. PubMed ID: 17380390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudo-organ boundary conditions applied to a computational fluid dynamics model of the human aorta.
    Yull Park J; Young Park C; Mo Hwang C; Sun K; Goo Min B
    Comput Biol Med; 2007 Aug; 37(8):1063-72. PubMed ID: 17140558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.