These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 15572060)

  • 41. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerical and in vitro investigations of pressure rise in a new hydrodynamic blood bearing.
    Chan WK; Ooi KT; Loh YC
    Artif Organs; 2007 Jun; 31(6):434-40. PubMed ID: 17537055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A level set method for determining critical curvatures for drainage and imbibition.
    Prodanović M; Bryant SL
    J Colloid Interface Sci; 2006 Dec; 304(2):442-58. PubMed ID: 17027812
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microembolic flow disturbances in the cerebral microvasculature with an arcadal network: a numerical simulation.
    Niimi H; Komai Y; Yamaguchi S; Seki J
    Clin Hemorheol Microcirc; 2006; 34(1-2):247-55. PubMed ID: 16543644
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular dynamics simulation studies of the conformation and lateral mobility of a charged adsorbate biomolecule: implications for estimating the critical value of the radius of a pore in porous media.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Colloid Interface Sci; 2005 Oct; 290(2):373-82. PubMed ID: 15925373
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lumped flow modeling in dynamically loaded coronary vessels.
    Jacobs J; Algranati D; Lanir Y
    J Biomech Eng; 2008 Oct; 130(5):054504. PubMed ID: 19045528
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Large-scale effects on resistivity index of porous media.
    Aggelopoulos C; Klepetsanis P; Theodoropoulou MA; Pomoni K; Tsakiroglou CD
    J Contam Hydrol; 2005 May; 77(4):299-323. PubMed ID: 15854721
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A role of network arrangements of microcirculation vessels in cardiovascular function.
    Cieslicki KM; Przybylski J
    Med Hypotheses; 2000 Jun; 54(6):995-9. PubMed ID: 10867754
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Model study of the effects of interactions between systemic and peripheral circulation on interstitial fluid balance.
    Aletti F; Baselli G
    J Gravit Physiol; 2007 Jul; 14(1):P51-2. PubMed ID: 18372695
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single- and dual-porosity modelling of flow in reclaimed mine soil cores with embedded lignitic fragments.
    Gerke HH; Badorreck A; Einecke M
    J Contam Hydrol; 2009 Feb; 104(1-4):90-106. PubMed ID: 19019490
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Peristaltic transport in a channel with a porous peripheral layer: model of a flow in gastrointestinal tract.
    Mishra M; Rao AR
    J Biomech; 2005 Apr; 38(4):779-89. PubMed ID: 15713299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices.
    Mazaheri AR; Ahmadi G
    Artif Organs; 2006 Jan; 30(1):10-5. PubMed ID: 16409392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A geometrical model of dermal capillary clearance.
    Kretsos K; Kasting GB
    Math Biosci; 2007 Aug; 208(2):430-53. PubMed ID: 17303187
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of ischemia-reperfusion injury in a microcirculatory model of pressure ulcers.
    Tsuji S; Ichioka S; Sekiya N; Nakatsuka T
    Wound Repair Regen; 2005; 13(2):209-15. PubMed ID: 15828947
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Model, structure and function of capillary circulation in human skin].
    Hammersen F
    Fortschr Med; 1982 Dec; 100(46):2166. PubMed ID: 7152445
    [No Abstract]   [Full Text] [Related]  

  • 57. A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments.
    Karadimitriou NK; Joekar-Niasar V; Hassanizadeh SM; Kleingeld PJ; Pyrak-Nolte LJ
    Lab Chip; 2012 Sep; 12(18):3413-8. PubMed ID: 22801572
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model for the study of skin microcirculation.
    Sorrentino EA; Mayrovitz HN
    Nurs Res; 1991; 40(3):182-4. PubMed ID: 2030999
    [No Abstract]   [Full Text] [Related]  

  • 59. [The effect of chemical (cantharides) and physical irritants (mechanical negative pressure) on the permeability of the human skin capillaries].
    SCHWARTZKOPFF W
    Z Gesamte Exp Med; 1960; 133():583-94. PubMed ID: 13749143
    [No Abstract]   [Full Text] [Related]  

  • 60. [Quantitative assessment of irrigation dermal microcirculation with computerized biomicroscopy].
    Iabichella ML; Mariotti R; Buttitta F; Malengo S; Balbarini A; Mariani M
    Minerva Cardioangiol; 1999 Dec; 47(12):615-6. PubMed ID: 10670228
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.