These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 15572060)

  • 61. Simple model of capillary condensation in porous media.
    Gatica SM; Calbi MM; Cole MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061605. PubMed ID: 12188741
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Effect of novocaine on capillary permeability in the skin].
    FOLDVARI PI
    Orv Hetil; 1960 Nov; 101():1591-3. PubMed ID: 13700516
    [No Abstract]   [Full Text] [Related]  

  • 63. Deliberation on the scientific triumvirate of clinical hemorheology, biorheology and microcirculation. An essay.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 2000; 22(1):75-7. PubMed ID: 10711824
    [No Abstract]   [Full Text] [Related]  

  • 64. [Problem of variation of capillary permeability of skin of the arm and leg in healthy subjects and in skin diseases; studies with the Landis test].
    HAENSCH R; BLAICH W
    Dermatol Wochenschr; 1959 Apr; 139(16):409-13. PubMed ID: 13663608
    [No Abstract]   [Full Text] [Related]  

  • 65. First phase microcirculatory reaction to mechanical skin irritation: a three layer model of a compliant vascular tree.
    Bauer D; Grebe R; Ehrlacher A
    J Theor Biol; 2005 Jan; 232(2):249-60. PubMed ID: 15530494
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A new method to model change in cutaneous blood flow due to mechanical skin irritation part I: comparison between experimental and numerical data.
    Bauer D; Grebe R; Ehrlacher A
    J Theor Biol; 2006 Feb; 238(3):575-87. PubMed ID: 16081107
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A new method to model change in cutaneous blood flow due to mechanical skin irritation part II: parameter identification procedure.
    Bauer D; Grebe R; Ehrlacher A
    J Theor Biol; 2006 Feb; 238(3):588-96. PubMed ID: 16084530
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors.
    Baish JW; Netti PA; Jain RK
    Microvasc Res; 1997 Mar; 53(2):128-41. PubMed ID: 9143544
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Blood flow in major blood vessels-modeling and experiments.
    Friedman MH; Giddens DP
    Ann Biomed Eng; 2005 Dec; 33(12):1710-3. PubMed ID: 16389517
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Theoretical modeling in hemodynamics of microcirculation.
    Lee J; Smith NP
    Microcirculation; 2008 Nov; 15(8):699-714. PubMed ID: 18720227
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hemorheology and circulation.
    Marossy A; Svorc P; Kron I; Gresová S
    Clin Hemorheol Microcirc; 2009; 42(4):239-58. PubMed ID: 19628890
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A three-layer continuous model of porous media to describe the first phase of skin irritation.
    Bauer D; Grebe R; Ehrlacher A
    J Theor Biol; 2005 Feb; 232(3):347-62. PubMed ID: 15572060
    [TBL] [Abstract][Full Text] [Related]  

  • 74.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 75.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 76.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 77.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 78.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]     [New Search]
    of 4.