These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 15572116)

  • 21. Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb.
    Salcedo E; Zhang C; Kronberg E; Restrepo D
    Chem Senses; 2005 Sep; 30(7):615-26. PubMed ID: 16141292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Odor maps in the olfactory cortex.
    Zou Z; Li F; Buck LB
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7724-9. PubMed ID: 15911779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Olfactory discrimination of structurally similar alcohols by cockroaches.
    Sakura M; Okada R; Mizunami M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Nov; 188(10):787-97. PubMed ID: 12466954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Odor discrimination requires proper olfactory fast oscillations in awake mice.
    Lepousez G; Lledo PM
    Neuron; 2013 Nov; 80(4):1010-24. PubMed ID: 24139818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitral cell temporal response patterns evoked by odor mixtures in the rat olfactory bulb.
    Giraudet P; Berthommier F; Chaput M
    J Neurophysiol; 2002 Aug; 88(2):829-38. PubMed ID: 12163534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of urinary odor-induced glomerular activation in the main olfactory bulb of aromatase knock-out and wild type female mice.
    Martel KL; Keller M; Douhard Q; Bakker J; Baum MJ
    Neurosci Lett; 2007 Jun; 421(2):101-5. PubMed ID: 17566659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of GABAA in the insect antennal lobe generally increases odor detection and discrimination thresholds.
    Mwilaria EK; Ghatak C; Daly KC
    Chem Senses; 2008 Mar; 33(3):267-81. PubMed ID: 18199605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Odor enrichment increases interneurons responsiveness in spatially defined regions of the olfactory bulb correlated with perception.
    Mandairon N; Didier A; Linster C
    Neurobiol Learn Mem; 2008 Jul; 90(1):178-84. PubMed ID: 18406178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of odor type on the discrimination and identification of odorants in multicomponent odor mixtures.
    Livermore A; Laing DG
    Physiol Behav; 1998 Nov; 65(2):311-20. PubMed ID: 9855481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Balancing the Robustness and Efficiency of Odor Representations during Learning.
    Chu MW; Li WL; Komiyama T
    Neuron; 2016 Oct; 92(1):174-186. PubMed ID: 27667005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactions of olfactory bulb neurons to different stimulus intensities in laboratory mice.
    Reinken U; Schmidt U
    Exp Brain Res; 1986; 63(1):151-7. PubMed ID: 3732438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Representation of natural stimuli in the rodent main olfactory bulb.
    Lin da Y; Shea SD; Katz LC
    Neuron; 2006 Jun; 50(6):937-49. PubMed ID: 16772174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Olfaction in rats with extensive lesions of the olfactory bulbs: implications for odor coding.
    Lu XC; Slotnick BM
    Neuroscience; 1998 Jun; 84(3):849-66. PubMed ID: 9579789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Behavioral responses to aliphatic aldehydes can be predicted from known electrophysiological responses of mitral cells in the olfactory bulb.
    Linster C; Hasselmo ME
    Physiol Behav; 1999 May; 66(3):497-502. PubMed ID: 10357440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mosaic representations of odors in the input and output layers of the mouse olfactory bulb.
    Chae H; Kepple DR; Bast WG; Murthy VN; Koulakov AA; Albeanu DF
    Nat Neurosci; 2019 Aug; 22(8):1306-1317. PubMed ID: 31332371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the ability of mice to detect VOCs, using a positive operant reinforcement procedure.
    Hojo R
    J Toxicol Sci; 2015 Aug; 40(4):479-83. PubMed ID: 26165644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Configurational and nonconfigurational interactions between odorants in binary mixtures.
    Wiltrout C; Dogra S; Linster C
    Behav Neurosci; 2003 Apr; 117(2):236-45. PubMed ID: 12708520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity.
    Friedrich RW; Laurent G
    Science; 2001 Feb; 291(5505):889-94. PubMed ID: 11157170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How does long-term odor deprivation affect the olfactory capacity of adult mice?
    Angely CJ; Coppola DM
    Behav Brain Funct; 2010 May; 6():26. PubMed ID: 20500833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Associative olfactory learning of honeybees to differential rewards in multiple contexts--effect of odor component and mixture similarity.
    Paldi N; Zilber S; Shafir S
    J Chem Ecol; 2003 Nov; 29(11):2515-38. PubMed ID: 14682531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.