These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15572219)

  • 1. Validated sampling strategy for assessing contaminants in soil stockpiles.
    Lamé F; Honders T; Derksen G; Gadella M
    Environ Pollut; 2005 Mar; 134(1):5-11. PubMed ID: 15572219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-stage sampling strategy for the delineation of soil pollution in a contaminated brownfield.
    Verstraete S; Van Meirvenne M
    Environ Pollut; 2008 Jul; 154(2):184-91. PubMed ID: 18068880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial contaminant heterogeneity: quantification with scale of measurement at contrasting sites.
    Taylor PD; Ramsey MH; Potts PJ
    J Environ Monit; 2005 Dec; 7(12):1364-70. PubMed ID: 16307098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of sampling design and estimation methods on nutrient leaching of intensively monitored forest plots in the Netherlands.
    de Vries W; Wieggers HJ; Brus DJ
    J Environ Monit; 2010 Aug; 12(8):1515-23. PubMed ID: 20539877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of analytical error and sampling error for contaminated soil.
    Gustavsson B; Luthbom K; Lagerkvist A
    J Hazard Mater; 2006 Nov; 138(2):252-60. PubMed ID: 17030410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils.
    Vanhoof C; Corthouts V; Tirez K
    J Environ Monit; 2004 Apr; 6(4):344-50. PubMed ID: 15054544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive sampling based on the cumulative distribution function of order statistics to delineate heavy-metal contaminated soils using kriging.
    Juang KW; Lee DY; Teng YL
    Environ Pollut; 2005 Nov; 138(2):268-77. PubMed ID: 15936860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sampling the soil in long-term forest plots: the implications of spatial variation.
    Kirwan N; Oliver MA; Moffat AJ; Morgan GW
    Environ Monit Assess; 2005 Dec; 111(1-3):149-72. PubMed ID: 16311827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multilayered box model for calculating preliminary remediation goals in soil screening.
    Shan C; Javandel I
    Risk Anal; 2005 Apr; 25(2):339-49. PubMed ID: 15876208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of uncertainty arising from different soil sampling devices: the use of variogram parameters.
    de Zorzi P; Barbizzi S; Belli M; Barbina M; Fajgelj A; Jacimovic R; Jeran Z; Menegon S; Pati A; Petruzzelli G; Sansone U; Van der Perk M
    Chemosphere; 2008 Jan; 70(5):745-52. PubMed ID: 17888487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil.
    Isoyama M; Wada S
    J Hazard Mater; 2007 May; 143(3):636-42. PubMed ID: 17267106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of positive matrix factorization in the analysis, characterisation and detection of contaminated soils.
    Vaccaro S; Sobiecka E; Contini S; Locoro G; Free G; Gawlik BM
    Chemosphere; 2007 Oct; 69(7):1055-63. PubMed ID: 17544480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics.
    Lee CS; Li X; Shi W; Cheung SC; Thornton I
    Sci Total Environ; 2006 Mar; 356(1-3):45-61. PubMed ID: 15913711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatially-evaluated methodology for assessing risk to a population from contaminated land.
    Gay JR; Korre A
    Environ Pollut; 2006 Jul; 142(2):227-34. PubMed ID: 16352380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissipation of DDT in a heavily contaminated soil in Mato Grosso, Brazil.
    Dalla Villa R; de Carvalho Dores EF; Carbo L; Cunha ML
    Chemosphere; 2006 Jul; 64(4):549-54. PubMed ID: 16442143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta.
    Su T; Shu S; Shi H; Wang J; Adams C; Witt EC
    Environ Pollut; 2008 Dec; 156(3):944-50. PubMed ID: 18757126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction.
    Peijnenburg WJ; Zablotskaja M; Vijver MG
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):163-79. PubMed ID: 17445889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica.
    Stark SC; Snape I; Graham NJ; Brennan JC; Gore DB
    J Environ Monit; 2008 Jan; 10(1):60-70. PubMed ID: 18175018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urban gardens: lead exposure, recontamination mechanisms, and implications for remediation design.
    Clark HF; Hausladen DM; Brabander DJ
    Environ Res; 2008 Jul; 107(3):312-9. PubMed ID: 18456252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.