BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

752 related articles for article (PubMed ID: 15572413)

  • 41. [Mitochondrial fusion protein Mfn2 and cardiovascular diseases].
    Yu HY; Guo YH; Gao W
    Sheng Li Ke Xue Jin Zhan; 2010 Feb; 41(1):11-6. PubMed ID: 21417008
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondrial dynamics in mammalian health and disease.
    Liesa M; Palacín M; Zorzano A
    Physiol Rev; 2009 Jul; 89(3):799-845. PubMed ID: 19584314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells.
    Lugus JJ; Ngoh GA; Bachschmid MM; Walsh K
    J Mol Cell Cardiol; 2011 Dec; 51(6):885-93. PubMed ID: 21839087
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1.
    Meeusen S; DeVay R; Block J; Cassidy-Stone A; Wayson S; McCaffery JM; Nunnari J
    Cell; 2006 Oct; 127(2):383-95. PubMed ID: 17055438
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells.
    Ishihara N; Jofuku A; Eura Y; Mihara K
    Biochem Biophys Res Commun; 2003 Feb; 301(4):891-8. PubMed ID: 12589796
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes.
    Hoppins S; Edlich F; Cleland MM; Banerjee S; McCaffery JM; Youle RJ; Nunnari J
    Mol Cell; 2011 Jan; 41(2):150-60. PubMed ID: 21255726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset.
    Li YJ; Cao YL; Feng JX; Qi Y; Meng S; Yang JF; Zhong YT; Kang S; Chen X; Lan L; Luo L; Yu B; Chen S; Chan DC; Hu J; Gao S
    Nat Commun; 2019 Oct; 10(1):4914. PubMed ID: 31664033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2.
    Sugiura A; Nagashima S; Tokuyama T; Amo T; Matsuki Y; Ishido S; Kudo Y; McBride HM; Fukuda T; Matsushita N; Inatome R; Yanagi S
    Mol Cell; 2013 Jul; 51(1):20-34. PubMed ID: 23727017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disruption of fusion results in mitochondrial heterogeneity and dysfunction.
    Chen H; Chomyn A; Chan DC
    J Biol Chem; 2005 Jul; 280(28):26185-92. PubMed ID: 15899901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inner-membrane proteins PMI/TMEM11 regulate mitochondrial morphogenesis independently of the DRP1/MFN fission/fusion pathways.
    Rival T; Macchi M; Arnauné-Pelloquin L; Poidevin M; Maillet F; Richard F; Fatmi A; Belenguer P; Royet J
    EMBO Rep; 2011 Mar; 12(3):223-30. PubMed ID: 21274005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New insights into mitochondrial fusion.
    Zhang Y; Chan DC
    FEBS Lett; 2007 May; 581(11):2168-73. PubMed ID: 17331506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The dynamics of cardiolipin synthesis post-mitochondrial fusion.
    Xu FY; McBride H; Acehan D; Vaz FM; Houtkooper RH; Lee RM; Mowat MA; Hatch GM
    Biochim Biophys Acta; 2010 Aug; 1798(8):1577-85. PubMed ID: 20434430
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of MFN1 restores tamoxifen-induced apoptosis in resistant cells by disrupting aberrant mitochondrial fusion dynamics.
    Song Y; Ren S; Chen X; Li X; Chen L; Zhao S; Zhang Y; Shen X; Chen Y
    Cancer Lett; 2024 May; 590():216847. PubMed ID: 38583647
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial dynamics: molecular mechanisms and the role in the heart.
    Jazbutyte V
    Minerva Cardioangiol; 2010 Apr; 58(2):231-9. PubMed ID: 20440252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential.
    Guillery O; Malka F; Landes T; Guillou E; Blackstone C; Lombès A; Belenguer P; Arnoult D; Rojo M
    Biol Cell; 2008 May; 100(5):315-25. PubMed ID: 18076378
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitochondrial fusion intermediates revealed in vitro.
    Meeusen S; McCaffery JM; Nunnari J
    Science; 2004 Sep; 305(5691):1747-52. PubMed ID: 15297626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1.
    Glauser L; Sonnay S; Stafa K; Moore DJ
    J Neurochem; 2011 Aug; 118(4):636-45. PubMed ID: 21615408
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The BCL-2-like protein CED-9 of C. elegans promotes FZO-1/Mfn1,2- and EAT-3/Opa1-dependent mitochondrial fusion.
    Rolland SG; Lu Y; David CN; Conradt B
    J Cell Biol; 2009 Aug; 186(4):525-40. PubMed ID: 19704021
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MARF and Opa1 control mitochondrial and cardiac function in Drosophila.
    Dorn GW; Clark CF; Eschenbacher WH; Kang MY; Engelhard JT; Warner SJ; Matkovich SJ; Jowdy CC
    Circ Res; 2011 Jan; 108(1):12-7. PubMed ID: 21148429
    [TBL] [Abstract][Full Text] [Related]  

  • 60. IL-6 protects against hyperoxia-induced mitochondrial damage via Bcl-2-induced Bak interactions with mitofusins.
    Waxman AB; Kolliputi N
    Am J Respir Cell Mol Biol; 2009 Oct; 41(4):385-96. PubMed ID: 19168699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.