BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1278 related articles for article (PubMed ID: 15572695)

  • 21. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation.
    Hong F; Sekhar KR; Freeman ML; Liebler DC
    J Biol Chem; 2005 Sep; 280(36):31768-75. PubMed ID: 15985429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62.
    Lau A; Wang XJ; Zhao F; Villeneuve NF; Wu T; Jiang T; Sun Z; White E; Zhang DD
    Mol Cell Biol; 2010 Jul; 30(13):3275-85. PubMed ID: 20421418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequent concerted genetic mechanisms disrupt multiple components of the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in thyroid cancer.
    Martinez VD; Vucic EA; Pikor LA; Thu KL; Hubaux R; Lam WL
    Mol Cancer; 2013 Oct; 12(1):124. PubMed ID: 24138990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cysteine-based regulation of the CUL3 adaptor protein Keap1.
    Sekhar KR; Rachakonda G; Freeman ML
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):21-6. PubMed ID: 19560482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.
    Eggler AL; Small E; Hannink M; Mesecar AD
    Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3.
    Rachakonda G; Xiong Y; Sekhar KR; Stamer SL; Liebler DC; Freeman ML
    Chem Res Toxicol; 2008 Mar; 21(3):705-10. PubMed ID: 18251510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Keap1 degradation by autophagy for the maintenance of redox homeostasis.
    Taguchi K; Fujikawa N; Komatsu M; Ishii T; Unno M; Akaike T; Motohashi H; Yamamoto M
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13561-6. PubMed ID: 22872865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex.
    McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2006 Aug; 281(34):24756-68. PubMed ID: 16790436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells.
    Iso T; Suzuki T; Baird L; Yamamoto M
    Mol Cell Biol; 2016 Dec; 36(24):3100-3112. PubMed ID: 27697860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm.
    Zipper LM; Mulcahy RT
    J Biol Chem; 2002 Sep; 277(39):36544-52. PubMed ID: 12145307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells.
    Baird L; Dinkova-Kostova AT
    Biochem Biophys Res Commun; 2013 Mar; 433(1):58-65. PubMed ID: 23454126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly.
    Adamson RJ; Payne NC; Bartual SG; Mazitschek R; Bullock AN
    Free Radic Biol Med; 2023 Aug; 204():215-225. PubMed ID: 37156295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2.
    Eggler AL; Liu G; Pezzuto JM; van Breemen RB; Mesecar AD
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10070-5. PubMed ID: 16006525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRL3s: The BTB-CUL3-RING E3 Ubiquitin Ligases.
    Wang P; Song J; Ye D
    Adv Exp Med Biol; 2020; 1217():211-223. PubMed ID: 31898230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy.
    Shibata T; Ohta T; Tong KI; Kokubu A; Odogawa R; Tsuta K; Asamura H; Yamamoto M; Hirohashi S
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13568-73. PubMed ID: 18757741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex.
    Tao S; Liu P; Luo G; Rojo de la Vega M; Chen H; Wu T; Tillotson J; Chapman E; Zhang DD
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28115426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate.
    Mulvaney KM; Matson JP; Siesser PF; Tamir TY; Goldfarb D; Jacobs TM; Cloer EW; Harrison JS; Vaziri C; Cook JG; Major MB
    J Biol Chem; 2016 Nov; 291(45):23719-23733. PubMed ID: 27621311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner.
    Rada P; Rojo AI; Chowdhry S; McMahon M; Hayes JD; Cuadrado A
    Mol Cell Biol; 2011 Mar; 31(6):1121-33. PubMed ID: 21245377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 64.