BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15573154)

  • 1. Effects of valproic acid on cardiac metabolism.
    Daniels T; Gallagher M; Tremblay G; Rodgers RL
    Can J Physiol Pharmacol; 2004 Oct; 82(10):927-33. PubMed ID: 15573154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic profiling of hearts exposed to sevoflurane and propofol reveals distinct regulation of fatty acid and glucose oxidation: CD36 and pyruvate dehydrogenase as key regulators in anesthetic-induced fuel shift.
    Wang L; Ko KW; Lucchinetti E; Zhang L; Troxler H; Hersberger M; Omar MA; Posse de Chaves EI; Lopaschuk GD; Clanachan AS; Zaugg M
    Anesthesiology; 2010 Sep; 113(3):541-51. PubMed ID: 20683255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of fatty acid oxidation by acetyl-CoA generated from glucose utilization in isolated myocytes.
    Abdel-aleem S; Nada MA; Sayed-Ahmed M; Hendrickson SC; St Louis J; Walthall HP; Lowe JE
    J Mol Cell Cardiol; 1996 May; 28(5):825-33. PubMed ID: 8762022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion.
    Wang P; Fraser H; Lloyd SG; McVeigh JJ; Belardinelli L; Chatham JC
    J Pharmacol Exp Ther; 2007 Apr; 321(1):213-20. PubMed ID: 17202401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of chronic trimetazidine treatment on mechanical function and fatty acid oxidation in diabetic rat hearts.
    Onay-Besikci A; Guner S; Arioglu E; Ozakca I; Ozcelikay AT; Altan VM
    Can J Physiol Pharmacol; 2007 May; 85(5):527-35. PubMed ID: 17632588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of high glucose/high insulin and dichloroacetate treatment on carbohydrate oxidation and functional recovery after low-flow ischemia and reperfusion in the isolated perfused rat heart.
    Wang P; Lloyd SG; Chatham JC
    Circulation; 2005 Apr; 111(16):2066-72. PubMed ID: 15824201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts.
    Sorokina N; O'Donnell JM; McKinney RD; Pound KM; Woldegiorgis G; LaNoue KF; Ballal K; Taegtmeyer H; Buttrick PM; Lewandowski ED
    Circulation; 2007 Apr; 115(15):2033-41. PubMed ID: 17404155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of non-oxidative glucose utilization by L-carnitine in isolated myocytes.
    Abdel-aleem S; Sayed-Ahmed M; Nada MA; Hendrickson SC; St Louis J; Lowe JE
    J Mol Cell Cardiol; 1995 Nov; 27(11):2465-72. PubMed ID: 8596197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of glucose utilization during the inhibition of fatty acid oxidation in rat myocytes.
    Abdel-aleem S; Li X; Anstadt MP; Perez-Tamayo RA; Lowe JE
    Horm Metab Res; 1994 Feb; 26(2):88-91. PubMed ID: 8200620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism.
    Clarke B; Wyatt KM; McCormack JG
    J Mol Cell Cardiol; 1996 Feb; 28(2):341-50. PubMed ID: 8729066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valproyl-dephosphoCoA: a novel metabolite of valproate formed in vitro in rat liver mitochondria.
    Silva MF; Ijlst L; Allers P; Jakobs C; Duran M; de Almeida IT; Wanders RJ
    Drug Metab Dispos; 2004 Nov; 32(11):1304-10. PubMed ID: 15483197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between lactate and fatty acids as sources of ATP in the isolated working rat heart.
    Schönekess BO
    J Mol Cell Cardiol; 1997 Oct; 29(10):2725-33. PubMed ID: 9344767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-lipoic acid increases cardiac glucose oxidation independent of AMP-activated protein kinase in isolated working rat hearts.
    Onay-Besikci A; Wagg C; Lopaschuk TP; Keung W; Lopaschuk GD
    Basic Res Cardiol; 2007 Sep; 102(5):436-44. PubMed ID: 17530314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase.
    Lopaschuk GD; Barr R; Thomas PD; Dyck JR
    Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat.
    Christe ME; Rodgers RL
    J Mol Cell Cardiol; 1994 Oct; 26(10):1371-5. PubMed ID: 7869397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of cardiac fatty acid oxidation by leptin is mediated by a nitric oxide-p38 MAPK-dependent mechanism.
    Sharma V; Mustafa S; Patel N; Wambolt R; Allard MF; McNeill JH
    Eur J Pharmacol; 2009 Sep; 617(1-3):113-7. PubMed ID: 19573526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic rates in normal and infarcted myocardium.
    Hansen CA; Fellenius E; Neely JR
    Can J Cardiol; 1986 Jul; Suppl A():1A-8A. PubMed ID: 3093034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyruvate uptake is inhibited by valproic acid and metabolites in mitochondrial membranes.
    Aires CC; Soveral G; Luís PB; ten Brink HJ; de Almeida IT; Duran M; Wanders RJ; Silva MF
    FEBS Lett; 2008 Oct; 582(23-24):3359-66. PubMed ID: 18775709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and intramitochondrial levels of valproyl-coenzyme A metabolites.
    Silva MF; Ruiter JP; IJlst L; Allers P; ten Brink HJ; Jakobs C; Duran M; Tavares de Almeida I; Wanders RJ
    Anal Biochem; 2001 Mar; 290(1):60-7. PubMed ID: 11180937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.