These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures. Glaser F; Rosenberg Y; Kessel A; Pupko T; Ben-Tal N Proteins; 2005 Feb; 58(3):610-7. PubMed ID: 15614759 [TBL] [Abstract][Full Text] [Related]
5. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. Maurer-Stroh S; Eisenhaber B; Eisenhaber F J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008 [TBL] [Abstract][Full Text] [Related]
6. MINER: software for phylogenetic motif identification. La D; Livesay DR Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W267-70. PubMed ID: 15980467 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary and structural feedback on selection of sequences for comparative analysis of proteins. Mihalek I; Res I; Lichtarge O Proteins; 2006 Apr; 63(1):87-99. PubMed ID: 16397893 [TBL] [Abstract][Full Text] [Related]
8. Integrating genomic data to predict transcription factor binding. Holloway DT; Kon M; DeLisi C Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910 [TBL] [Abstract][Full Text] [Related]
9. A method using active-site sequence conservation to find functional shifts in protein families: application to the enzymes of central metabolism, leading to the identification of an anomalous isocitrate dehydrogenase in pathogens. Das R; Gerstein M Proteins; 2004 May; 55(2):455-63. PubMed ID: 15048835 [TBL] [Abstract][Full Text] [Related]
11. CoSMoS: Conserved Sequence Motif Search in the proteome. Liu XI; Korde N; Jakob U; Leichert LI BMC Bioinformatics; 2006 Jan; 7():37. PubMed ID: 16433915 [TBL] [Abstract][Full Text] [Related]
12. Comparison of ARM and HEAT protein repeats. Andrade MA; Petosa C; O'Donoghue SI; Müller CW; Bork P J Mol Biol; 2001 May; 309(1):1-18. PubMed ID: 11491282 [TBL] [Abstract][Full Text] [Related]
13. Rank information: a structure-independent measure of evolutionary trace quality that improves identification of protein functional sites. Yao H; Mihalek I; Lichtarge O Proteins; 2006 Oct; 65(1):111-23. PubMed ID: 16894615 [TBL] [Abstract][Full Text] [Related]
14. In silico identification of functional regions in proteins. Nimrod G; Glaser F; Steinberg D; Ben-Tal N; Pupko T Bioinformatics; 2005 Jun; 21 Suppl 1():i328-37. PubMed ID: 15961475 [TBL] [Abstract][Full Text] [Related]
15. Improving position-specific predictions of protein functional sites using phylogenetic motifs. Dukka BK; Livesay DR Bioinformatics; 2008 Oct; 24(20):2308-16. PubMed ID: 18723520 [TBL] [Abstract][Full Text] [Related]
16. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. Armon A; Graur D; Ben-Tal N J Mol Biol; 2001 Mar; 307(1):447-63. PubMed ID: 11243830 [TBL] [Abstract][Full Text] [Related]
17. [Computational method for prediction of protein functional sites using specificity determinants]. Kalinina OV; Rassel RB; Rakhmaninova AB; Gel'fand MS Mol Biol (Mosk); 2007; 41(1):151-62. PubMed ID: 17380902 [TBL] [Abstract][Full Text] [Related]
18. Statistical analysis and prediction of protein-protein interfaces. Bordner AJ; Abagyan R Proteins; 2005 Aug; 60(3):353-66. PubMed ID: 15906321 [TBL] [Abstract][Full Text] [Related]
19. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif. Magliery TJ; Regan L J Mol Biol; 2004 Oct; 343(3):731-45. PubMed ID: 15465058 [TBL] [Abstract][Full Text] [Related]
20. Candidate nsSNPs that can affect the functions and interactions of cell cycle proteins. Savas S; Ahmad MF; Shariff M; Kim DY; Ozcelik H Proteins; 2005 Feb; 58(3):697-705. PubMed ID: 15617026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]