These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15573541)

  • 1. Not Now! Supporting interruption management by indicating the modality and urgency of pending tasks.
    Ho CY; Nikolic MI; Waters MJ; Sarter NB
    Hum Factors; 2004; 46(3):399-409. PubMed ID: 15573541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATC-lab: an air traffic control simulator for the laboratory.
    Loft S; Hill A; Neal A; Humphreys M; Yeo G
    Behav Res Methods Instrum Comput; 2004 May; 36(2):331-8. PubMed ID: 15354699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interruption management: the use of attention-directing tactile cues.
    Hopp PJ; Smith CA; Clegg BA; Heggestad ED
    Hum Factors; 2005; 47(1):1-11. PubMed ID: 15960083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supporting interruption management and multimodal interface design: three meta-analyses of task performance as a function of interrupting task modality.
    Lu SA; Wickens CD; Prinet JC; Hutchins SD; Sarter N; Sebok A
    Hum Factors; 2013 Aug; 55(4):697-724. PubMed ID: 23964412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remembering to execute deferred tasks in simulated air traffic control: The impact of interruptions.
    Wilson MD; Farrell S; Visser TAW; Loft S
    J Exp Psychol Appl; 2018 Sep; 24(3):360-379. PubMed ID: 30047752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using informative peripheral visual and tactile cues to support task and interruption management.
    Hameed S; Ferris T; Jayaraman S; Sarter N
    Hum Factors; 2009 Apr; 51(2):126-35. PubMed ID: 19653478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory processes of flight situation awareness: interactive roles of working memory capacity, long-term working memory, and expertise.
    Sohn YW; Doane SM
    Hum Factors; 2004; 46(3):461-75. PubMed ID: 15573546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATC-lab(Advanced): an air traffic control simulator with realism and control.
    Fothergill S; Loft S; Neal A
    Behav Res Methods; 2009 Feb; 41(1):118-127. PubMed ID: 19182131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An eye movement analysis of the effect of interruption modality on primary task resumption.
    Ratwani R; Trafton JG
    Hum Factors; 2010 Jun; 52(3):370-80. PubMed ID: 21077561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of alerting designs on air traffic controller's eye movement patterns and situation awareness.
    Kearney P; Li WC; Yu CS; Braithwaite G
    Ergonomics; 2019 Feb; 62(2):305-318. PubMed ID: 29943681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Procedural errors in air traffic control: effects of traffic density, expertise, and automation.
    Di Nocera F; Fabrizi R; Terenzi M; Ferlazzo F
    Aviat Space Environ Med; 2006 Jun; 77(6):639-43. PubMed ID: 16780243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using spatial context to support prospective memory in simulated air traffic control.
    Loft S; Finnerty D; Remington RW
    Hum Factors; 2011 Dec; 53(6):662-71. PubMed ID: 22235528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supporting trust calibration and the effective use of decision aids by presenting dynamic system confidence information.
    McGuirl JM; Sarter NB
    Hum Factors; 2006; 48(4):656-65. PubMed ID: 17240714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovering from interruptions: implications for driver distraction research.
    Monk CA; Boehm-Davis DA; Trafton JG
    Hum Factors; 2004; 46(4):650-63. PubMed ID: 15709327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing prospective memory error and costs in simulated air traffic control: External aids, extending practice, and removing perceived memory requirements.
    Loft S; Chapman M; Smith RE
    J Exp Psychol Appl; 2016 Sep; 22(3):272-84. PubMed ID: 27608067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing operator capacity estimates for supervisory control of autonomous vehicles.
    Cummings ML; Guerlain S
    Hum Factors; 2007 Feb; 49(1):1-15. PubMed ID: 17315838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervisory-level interruption recovery in time-critical control tasks.
    Sasangohar F; Scott SD; Cummings ML
    Appl Ergon; 2014 Jul; 45(4):1148-56. PubMed ID: 24581931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EGG/ERP measures.
    Giraudet L; Imbert JP; BĂ©renger M; Tremblay S; Causse M
    Behav Brain Res; 2015 Nov; 294():246-53. PubMed ID: 26200718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Good vibrations: tactile feedback in support of attention allocation and human-automation coordination in event-driven domains.
    Sklar AE; Sarter NB
    Hum Factors; 1999 Dec; 41(4):543-52. PubMed ID: 10774125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting task management in aviation.
    Iani C; Wickens CD
    Hum Factors; 2007 Feb; 49(1):16-24. PubMed ID: 17315839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.