These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 15573569)
21. Decreasing snow cover alters functional composition and diversity of Arctic tundra. Niittynen P; Heikkinen RK; Luoto M Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21480-21487. PubMed ID: 32778575 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of effects in four Arctic subregions. Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G; Schaphoff S; Sitch S; Zöckler C Ambio; 2004 Nov; 33(7):469-73. PubMed ID: 15573574 [TBL] [Abstract][Full Text] [Related]
23. Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North. Liess A; Guo J; Lind MI; Rowe O J Anim Ecol; 2015 Nov; 84(6):1744-56. PubMed ID: 26239271 [TBL] [Abstract][Full Text] [Related]
24. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Nielsen UN; Wall DH Ecol Lett; 2013 Mar; 16(3):409-19. PubMed ID: 23278945 [TBL] [Abstract][Full Text] [Related]
25. Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra. Blanc-Betes E; Welker JM; Sturchio NC; Chanton JP; Gonzalez-Meler MA Glob Chang Biol; 2016 Aug; 22(8):2818-33. PubMed ID: 26851545 [TBL] [Abstract][Full Text] [Related]
26. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra. Leffler AJ; Klein ES; Oberbauer SF; Welker JM Oecologia; 2016 May; 181(1):287-97. PubMed ID: 26747269 [TBL] [Abstract][Full Text] [Related]
27. Insect overwintering in a changing climate. Bale JS; Hayward SA J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123 [TBL] [Abstract][Full Text] [Related]
28. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Ayres MP; Lombardero MJ Sci Total Environ; 2000 Nov; 262(3):263-86. PubMed ID: 11087032 [TBL] [Abstract][Full Text] [Related]
29. Extreme spring conditions in the Arctic delay spring phenology of long-distance migratory songbirds. Boelman NT; Krause JS; Sweet SK; Chmura HE; Perez JH; Gough L; Wingfield JC Oecologia; 2017 Sep; 185(1):69-80. PubMed ID: 28779226 [TBL] [Abstract][Full Text] [Related]
30. Comparison of the distribution and phenology of Arctic Mountain plants between the early 20th and 21st centuries. MacDougall AS; Caplat P; Olofsson J; Siewert MB; Bonner C; Esch E; Lessard-Therrien M; Rosenzweig H; Schäfer AK; Raker P; Ridha H; Bolmgren K; Fries TCE; Larson K Glob Chang Biol; 2021 Oct; 27(20):5070-5083. PubMed ID: 34297435 [TBL] [Abstract][Full Text] [Related]
31. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic. Gustine DD; Brinkman TJ; Lindgren MA; Schmidt JI; Rupp TS; Adams LG PLoS One; 2014; 9(7):e100588. PubMed ID: 24991804 [TBL] [Abstract][Full Text] [Related]
32. Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra. Liang J; Xia J; Shi Z; Jiang L; Ma S; Lu X; Mauritz M; Natali SM; Pegoraro E; Penton CR; Plaza C; Salmon VG; Celis G; Cole JR; Konstantinidis KT; Tiedje JM; Zhou J; Schuur EAG; Luo Y Glob Chang Biol; 2018 Oct; 24(10):4946-4959. PubMed ID: 29802797 [TBL] [Abstract][Full Text] [Related]
33. Rising minimum temperatures contribute to 50 years of occupancy decline among cold-adapted Arctic and boreal butterflies in North America. Shirey V; Neupane N; Guralnick R; Ries L Glob Chang Biol; 2024 Feb; 30(2):e17205. PubMed ID: 38403895 [TBL] [Abstract][Full Text] [Related]
34. Both seed germination and seedling mortality increase with experimental warming and fertilization in a subarctic tundra. Milbau A; Vandeplas N; Kockelbergh F; Nijs I AoB Plants; 2017 Sep; 9(5):plx040. PubMed ID: 29026511 [TBL] [Abstract][Full Text] [Related]
35. Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system. Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G; Schaphoff S; Sitch S Ambio; 2004 Nov; 33(7):459-68. PubMed ID: 15573573 [TBL] [Abstract][Full Text] [Related]
36. Rapid climate change increases diversity and homogenizes composition of coastal fish at high latitudes. Siwertsson A; Lindström U; Aune M; Berg E; Skarðhamar J; Varpe Ø; Primicerio R Glob Chang Biol; 2024 May; 30(5):e17273. PubMed ID: 38727723 [TBL] [Abstract][Full Text] [Related]
37. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures. Männistö MK; Kurhela E; Tiirola M; Häggblom MM FEMS Microbiol Ecol; 2013 Apr; 84(1):47-59. PubMed ID: 23106413 [TBL] [Abstract][Full Text] [Related]
38. Long-term recovery patterns of arctic tundra after winter seismic exploration. Jorgenson JC; Ver Hoef JM; Jorgenson MT Ecol Appl; 2010 Jan; 20(1):205-21. PubMed ID: 20349841 [TBL] [Abstract][Full Text] [Related]