These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 15573581)

  • 41. Effects of humic acid coatings on phenanthrene sorption to black carbon.
    Wu C; Zhang XL; Li GB
    J Environ Sci (China); 2007; 19(10):1189-92. PubMed ID: 18062416
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments.
    Amymarie AD; Gschwend PM
    Environ Sci Technol; 2002 Jan; 36(1):21-9. PubMed ID: 11811485
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.
    Wang B; Zhang W; Li H; Fu H; Qu X; Zhu D
    Environ Pollut; 2017 Jan; 220(Pt B):1349-1358. PubMed ID: 27838059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization and Phenanthrene Sorption of Natural and Pyrogenic Organic Matter Fractions.
    Jin J; Sun K; Wang Z; Yang Y; Han L; Xing B
    Environ Sci Technol; 2017 Mar; 51(5):2635-2642. PubMed ID: 28135084
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization and phenanthrene sorption of organic matter fractions isolated from organic and mineral soils.
    Shi H; Zhu S; Qiao Y; Wang W; Shi J; Li X; Pang W
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15971-15979. PubMed ID: 29589243
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by (13)C-NMR and IR spectroscopy.
    Dutta A; Mandal A; Manna S; Singh SB; Berns AE; Singh N
    Environ Monit Assess; 2015 Oct; 187(10):620. PubMed ID: 26353968
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sorption of naphthalene and phenanthrene by soil humic acids.
    Xing B
    Environ Pollut; 2001; 111(2):303-9. PubMed ID: 11202734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Effect of Colloids in Sediment and Soil on Their Sorption Behavior of Chloramphenicol].
    Yan CX; Luo YQ; Nie MH; Zhou X; Ding MJ
    Huan Jing Ke Xue; 2022 Oct; 43(10):4522-4535. PubMed ID: 36224138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sorption of Cu(2+) on humic acids sequentially extracted from a sediment.
    Yang K; Miao G; Wu W; Lin D; Pan B; Wu F; Xing B
    Chemosphere; 2015 Nov; 138():657-63. PubMed ID: 26246274
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluating phenanthrene sorption on various wood chars.
    James G; Sabatini DA; Chiou CT; Rutherford D; Scott AC; Karapanagioti HK
    Water Res; 2005 Feb; 39(4):549-58. PubMed ID: 15707627
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights into the attenuated sorption of organic compounds on black carbon aged in soil.
    Luo L; Lv J; Chen Z; Huang R; Zhang S
    Environ Pollut; 2017 Dec; 231(Pt 2):1469-1476. PubMed ID: 28935407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter.
    Lu Y; Pignatello JJ
    Environ Sci Technol; 2004 Nov; 38(22):5853-62. PubMed ID: 15573582
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sorption-desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments.
    Oren A; Chefetz B
    Chemosphere; 2005 Sep; 61(1):19-29. PubMed ID: 16157166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantification, morphology and source of humic acid, kerogen and black carbon in offshore marine sediments from Xiamen Gulf, China.
    Chen Y; Zhao J; Yin L; Chen J; Yuan D
    J Environ Sci (China); 2013 Feb; 25(2):287-94. PubMed ID: 23596948
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sorption of pentachlorophenol and phenanthrene by humic acid-coated hematite nanoparticles.
    Xu B; Lian Z; Liu F; Yu Y; He Y; Brookes PC; Xu J
    Environ Pollut; 2019 May; 248():929-937. PubMed ID: 30856508
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced binding of hydrophobic organic contaminants by microwave-assisted humification of soil organic matter.
    Hur J; Park SW; Kim MC; Kim HS
    Chemosphere; 2013 Nov; 93(11):2704-10. PubMed ID: 24050718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immobilization of soot particles in a silica matrix: A sorbent-carrier system for studying organic chemical sorption.
    Nguyen TH; Sabbah I; Ball WP
    Environ Sci Technol; 2005 Sep; 39(17):6527-34. PubMed ID: 16190208
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.
    Fu H; Wei C; Qu X; Li H; Zhu D
    Environ Pollut; 2018 Jan; 232():402-410. PubMed ID: 28966024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Sorption of 17beta-estradiol to soils and sediment and influence of pig manure DOM].
    Zhang FS; Li YX; Huang ZC; Yang M
    Huan Jing Ke Xue; 2012 Oct; 33(10):3542-6. PubMed ID: 23233986
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Roles of acetone-conditioning and lipid in sorption of organic contaminants.
    Wang X; Xing B
    Environ Sci Technol; 2007 Aug; 41(16):5731-7. PubMed ID: 17874780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.