These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15573583)

  • 1. Effects of competitor and natural organic matter characteristics on the equilibrium sorption of 1,2-dichlorobenzene in soil and shale.
    Ju D; Young TM
    Environ Sci Technol; 2004 Nov; 38(22):5863-70. PubMed ID: 15573583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the rigidity of geosorbent organic matter on non-ideal sorption behaviors of chlorinated benzenes.
    Ju D; Young TM
    Water Res; 2005 Jul; 39(12):2599-610. PubMed ID: 15967474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of natural organic matter rigidity on the sorption, desorption, and competitive displacement rates of 1,2-dichlorobenzene.
    Ju D; Young TM
    Environ Sci Technol; 2005 Oct; 39(20):7956-63. PubMed ID: 16295861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments.
    Ran Y; Huang W; Rao PS; Liu D; Sheng G; Fu J
    J Environ Qual; 2002; 31(6):1953-62. PubMed ID: 12469845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and predicting competitive sorption of organic compounds in soil.
    Faria IR; Young TM
    Environ Toxicol Chem; 2010 Dec; 29(12):2676-84. PubMed ID: 21061392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption irreversibility of 1,4-dichlorobenzene in two natural organic matter-rich geosorbents.
    Sander M; Pignatello JJ
    Environ Toxicol Chem; 2009 Mar; 28(3):447-57. PubMed ID: 18937541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion.
    Sander M; Lu Y; Pignatello JJ
    Environ Sci Technol; 2006 Jan; 40(1):170-8. PubMed ID: 16433348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive sorption of organic contaminants in chalk.
    Graber ER; Borisover M
    J Contam Hydrol; 2003 Dec; 67(1-4):159-75. PubMed ID: 14607475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption kinetics of organic contaminants by sandy aquifer and its kerogen isolate.
    Ran Y; Xing B; Rao PS; Sheng G; Fu J
    Environ Sci Technol; 2005 Mar; 39(6):1649-57. PubMed ID: 15819221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter.
    Lu Y; Pignatello JJ
    Environ Sci Technol; 2004 Nov; 38(22):5853-62. PubMed ID: 15573582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of 1,4-dichlorobenzene and heavy metals on their sorption behaviors in two Chinese soils.
    Sun F; Zhou Q
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):33-41. PubMed ID: 19499160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed reactivity model for sorption by soils and sediments. 15. High-concentration co-contaminant effects on phenanthrene sorption and desorption.
    Weber WJ; Kim SH; Johnson MD
    Environ Sci Technol; 2002 Aug; 36(16):3625-34. PubMed ID: 12214658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants.
    Xiao B; Yu Z; Huang W; Song J; Peng P
    Environ Sci Technol; 2004 Nov; 38(22):5842-52. PubMed ID: 15573581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Competitive sorption of mixed organic pollutants by soils].
    Chen DY; Xie WB; Ji L; Li JW; Tang ZP
    Huan Jing Ke Xue; 2006 Jul; 27(7):1377-82. PubMed ID: 16881313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive sorption between 1,2,4-trichlorobenzene/tetrachloroethene and 1,2,4,5-tetrachlorobenzene by soils/sediments from South China.
    Shu Y; Liu P; Zhang Q; Wei D
    Sci Total Environ; 2013 Oct; 463-464():258-63. PubMed ID: 23820006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating competitive sorption mechanisms of volatile organic compounds in soils and sediments using polymers and zeolites.
    Li J; Werth CJ
    Environ Sci Technol; 2001 Feb; 35(3):568-74. PubMed ID: 11351730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration of natural organic matter: effect on sorption of organic compounds by humin and humic acid fractions vs original peat material.
    Borisover M; Graber ER
    Environ Sci Technol; 2004 Aug; 38(15):4120-9. PubMed ID: 15352450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes.
    Yang K; Wang X; Zhu L; Xing B
    Environ Sci Technol; 2006 Sep; 40(18):5804-10. PubMed ID: 17007144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear and competitive sorption of apolar compounds in black carbon-free natural organic materials.
    Pignatello JJ; Lu Y; LeBoeuf EJ; Huang W; Song J; Xing B
    J Environ Qual; 2006; 35(4):1049-59. PubMed ID: 16738390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter.
    Ran Y; Yang Y; Xing B; Pignatello JJ; Kwon S; Su W; Zhou L
    J Environ Qual; 2013; 42(3):806-14. PubMed ID: 23673947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.