These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 15574118)
1. Fed-batch pediocin production by Pediococcus acidilactici NRRL B-5627 on whey. Pérez Guerra N; Bernárdez PF; Agrasar AT; López Macías C; Castro LP Biotechnol Appl Biochem; 2005 Aug; 42(Pt 1):17-23. PubMed ID: 15574118 [TBL] [Abstract][Full Text] [Related]
2. Pediocin PA-1 production during repeated-cycle batch culture of immobilized Pediococcus acidilactici UL5 cells. Naghmouchi K; Fliss I; Drider D; Lacroix C J Biosci Bioeng; 2008 May; 105(5):513-7. PubMed ID: 18558343 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures. Guerra NP; Castro LP Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):157-67. PubMed ID: 12793859 [TBL] [Abstract][Full Text] [Related]
4. Pediocin production by Pediococcus acidilactici in solid state culture on a waste medium: process simulation and experimental results. Vázquez Alvarez JA; González MP; Murado MA Biotechnol Bioeng; 2004 Mar; 85(6):676-82. PubMed ID: 14966809 [TBL] [Abstract][Full Text] [Related]
5. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Guerra NP; Rua ML; Pastrana L Int J Food Microbiol; 2001 Nov; 70(3):267-81. PubMed ID: 11764192 [TBL] [Abstract][Full Text] [Related]
6. Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: production conditions, purification and characterization. Anastasiadou S; Papagianni M; Filiousis G; Ambrosiadis I; Koidis P Bioresour Technol; 2008 Sep; 99(13):5384-90. PubMed ID: 18093831 [TBL] [Abstract][Full Text] [Related]
7. Rapid quantifiable assessment of nutritional parameters influencing pediocin production by Pediococcus acidilactici NRRL B5627. Anastasiadou S; Papagianni M; Ambrosiadis I; Koidis P Bioresour Technol; 2008 Sep; 99(14):6646-50. PubMed ID: 18215516 [TBL] [Abstract][Full Text] [Related]
8. Modelling growth and bacteriocin production by Pediococcus acidilactici PA003 as a function of temperature and pH value. Zhang J; Zhang Y; Liu SN; Han Y; Zhou ZJ Appl Biochem Biotechnol; 2012 Mar; 166(6):1388-400. PubMed ID: 22246730 [TBL] [Abstract][Full Text] [Related]
9. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production. Liu YS; Wu JY Biotechnol Bioeng; 2008 Dec; 101(5):996-1004. PubMed ID: 18683256 [TBL] [Abstract][Full Text] [Related]
10. Fed-batch fermentation of Tuber melanosporum for the hyperproduction of mycelia and bioactive Tuber polysaccharides. Liu QN; Liu RS; Wang YH; Mi ZY; Li DS; Zhong JJ; Tang YJ Bioresour Technol; 2009 Jul; 100(14):3644-9. PubMed ID: 19303769 [TBL] [Abstract][Full Text] [Related]
11. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa. Shih IL; Chou BW; Chen CC; Wu JY; Hsieh C Bioresour Technol; 2008 Mar; 99(4):785-93. PubMed ID: 17363244 [TBL] [Abstract][Full Text] [Related]
12. A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose. Yang ST; Huang Y; Hong G Biotechnol Bioeng; 1995 Mar; 45(5):379-86. PubMed ID: 18623230 [TBL] [Abstract][Full Text] [Related]
14. Bacterial cellulose production by fed-batch fermentation in molasses medium. Bae S; Shoda M Biotechnol Prog; 2004; 20(5):1366-71. PubMed ID: 15458319 [TBL] [Abstract][Full Text] [Related]
15. Nisin and pediocin production on mussel-processing waste supplemented with glucose and five nitrogen sources. Guerra NP; Pastrana L Lett Appl Microbiol; 2002; 34(2):114-8. PubMed ID: 11849506 [TBL] [Abstract][Full Text] [Related]
16. Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates. Costas Malvido M; Alonso González E; Pérez Guerra N Appl Microbiol Biotechnol; 2016 Sep; 100(18):7899-908. PubMed ID: 27112347 [TBL] [Abstract][Full Text] [Related]
17. Production of bacteriocins from Lactococcus lactis subsp. lactis CECT 539 and Pediococcus acidilactici NRRL B-5627 using mussel-processing wastes. Pérez Guerra N; Pastrana Castro L Biotechnol Appl Biochem; 2002 Oct; 36(2):119-25. PubMed ID: 12241553 [TBL] [Abstract][Full Text] [Related]
18. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. Liu Y; Liao W; Chen S J Appl Microbiol; 2008 Nov; 105(5):1521-8. PubMed ID: 19146489 [TBL] [Abstract][Full Text] [Related]
19. Influence of Environmental Factors on Bacteriocin Production by Human Isolates of Lactococcus lactis MM19 and Pediococcus acidilactici MM33. Turgis M; Vu KD; Millette M; Dupont C; Lacroix M Probiotics Antimicrob Proteins; 2016 Mar; 8(1):53-9. PubMed ID: 26686688 [TBL] [Abstract][Full Text] [Related]
20. Co-cultivation of a bacteriocin-producing mixed culture of Bifidobacterium thermophilum RBL67 and Pediococcus acidilactici UVA1 isolated from baby faeces. Mathys S; Meile L; Lacroix C J Appl Microbiol; 2009 Jul; 107(1):36-46. PubMed ID: 19298509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]