BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 15574118)

  • 1. Fed-batch pediocin production by Pediococcus acidilactici NRRL B-5627 on whey.
    Pérez Guerra N; Bernárdez PF; Agrasar AT; López Macías C; Castro LP
    Biotechnol Appl Biochem; 2005 Aug; 42(Pt 1):17-23. PubMed ID: 15574118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pediocin PA-1 production during repeated-cycle batch culture of immobilized Pediococcus acidilactici UL5 cells.
    Naghmouchi K; Fliss I; Drider D; Lacroix C
    J Biosci Bioeng; 2008 May; 105(5):513-7. PubMed ID: 18558343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures.
    Guerra NP; Castro LP
    Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):157-67. PubMed ID: 12793859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pediocin production by Pediococcus acidilactici in solid state culture on a waste medium: process simulation and experimental results.
    Vázquez Alvarez JA; González MP; Murado MA
    Biotechnol Bioeng; 2004 Mar; 85(6):676-82. PubMed ID: 14966809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey.
    Guerra NP; Rua ML; Pastrana L
    Int J Food Microbiol; 2001 Nov; 70(3):267-81. PubMed ID: 11764192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: production conditions, purification and characterization.
    Anastasiadou S; Papagianni M; Filiousis G; Ambrosiadis I; Koidis P
    Bioresour Technol; 2008 Sep; 99(13):5384-90. PubMed ID: 18093831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid quantifiable assessment of nutritional parameters influencing pediocin production by Pediococcus acidilactici NRRL B5627.
    Anastasiadou S; Papagianni M; Ambrosiadis I; Koidis P
    Bioresour Technol; 2008 Sep; 99(14):6646-50. PubMed ID: 18215516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling growth and bacteriocin production by Pediococcus acidilactici PA003 as a function of temperature and pH value.
    Zhang J; Zhang Y; Liu SN; Han Y; Zhou ZJ
    Appl Biochem Biotechnol; 2012 Mar; 166(6):1388-400. PubMed ID: 22246730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production.
    Liu YS; Wu JY
    Biotechnol Bioeng; 2008 Dec; 101(5):996-1004. PubMed ID: 18683256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fed-batch fermentation of Tuber melanosporum for the hyperproduction of mycelia and bioactive Tuber polysaccharides.
    Liu QN; Liu RS; Wang YH; Mi ZY; Li DS; Zhong JJ; Tang YJ
    Bioresour Technol; 2009 Jul; 100(14):3644-9. PubMed ID: 19303769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa.
    Shih IL; Chou BW; Chen CC; Wu JY; Hsieh C
    Bioresour Technol; 2008 Mar; 99(4):785-93. PubMed ID: 17363244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose.
    Yang ST; Huang Y; Hong G
    Biotechnol Bioeng; 1995 Mar; 45(5):379-86. PubMed ID: 18623230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fed-batch mode in shake flasks by slow-release technique.
    Jeude M; Dittrich B; Niederschulte H; Anderlei T; Knocke C; Klee D; Büchs J
    Biotechnol Bioeng; 2006 Oct; 95(3):433-45. PubMed ID: 16736531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial cellulose production by fed-batch fermentation in molasses medium.
    Bae S; Shoda M
    Biotechnol Prog; 2004; 20(5):1366-71. PubMed ID: 15458319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nisin and pediocin production on mussel-processing waste supplemented with glucose and five nitrogen sources.
    Guerra NP; Pastrana L
    Lett Appl Microbiol; 2002; 34(2):114-8. PubMed ID: 11849506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates.
    Costas Malvido M; Alonso González E; Pérez Guerra N
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7899-908. PubMed ID: 27112347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of bacteriocins from Lactococcus lactis subsp. lactis CECT 539 and Pediococcus acidilactici NRRL B-5627 using mussel-processing wastes.
    Pérez Guerra N; Pastrana Castro L
    Biotechnol Appl Biochem; 2002 Oct; 36(2):119-25. PubMed ID: 12241553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose.
    Liu Y; Liao W; Chen S
    J Appl Microbiol; 2008 Nov; 105(5):1521-8. PubMed ID: 19146489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Environmental Factors on Bacteriocin Production by Human Isolates of Lactococcus lactis MM19 and Pediococcus acidilactici MM33.
    Turgis M; Vu KD; Millette M; Dupont C; Lacroix M
    Probiotics Antimicrob Proteins; 2016 Mar; 8(1):53-9. PubMed ID: 26686688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-cultivation of a bacteriocin-producing mixed culture of Bifidobacterium thermophilum RBL67 and Pediococcus acidilactici UVA1 isolated from baby faeces.
    Mathys S; Meile L; Lacroix C
    J Appl Microbiol; 2009 Jul; 107(1):36-46. PubMed ID: 19298509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.