These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 15574296)

  • 1. Mutation of the POU-domain gene Brn4/Pou3f4 affects middle-ear sound conduction in the mouse.
    Samadi DS; Saunders JC; Crenshaw EB
    Hear Res; 2005 Jan; 199(1-2):11-21. PubMed ID: 15574296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear.
    Phippard D; Lu L; Lee D; Saunders JC; Crenshaw EB
    J Neurosci; 1999 Jul; 19(14):5980-9. PubMed ID: 10407036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal mesenchymal differentiation in the superior semicircular canal of brn4/pou3f4 knockout mice.
    Sobol SE; Teng X; Crenshaw EB
    Arch Otolaryngol Head Neck Surg; 2005 Jan; 131(1):41-5. PubMed ID: 15655183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Otic mesenchyme expression of Cre recombinase directed by the inner ear enhancer of the Brn4/Pou3f4 gene.
    Ahn KJ; Passero F; Crenshaw EB
    Genesis; 2009 Mar; 47(3):137-41. PubMed ID: 19217071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pou3f4 deficiency causes defects in otic fibrocytes and stria vascularis by different mechanisms.
    Song MH; Choi SY; Wu L; Oh SK; Lee HK; Lee DJ; Shim DB; Choi JY; Kim UK; Bok J
    Biochem Biophys Res Commun; 2011 Jan; 404(1):528-33. PubMed ID: 21144821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Pax2 in mouse inner ear development.
    Burton Q; Cole LK; Mulheisen M; Chang W; Wu DK
    Dev Biol; 2004 Aug; 272(1):161-75. PubMed ID: 15242798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sex-linked fidget mutation abolishes Brn4/Pou3f4 gene expression in the embryonic inner ear.
    Phippard D; Boyd Y; Reed V; Fisher G; Masson WK; Evans EP; Saunders JC; Crenshaw EB
    Hum Mol Genet; 2000 Jan; 9(1):79-85. PubMed ID: 10587581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental ossicular fixations and the middle ear's response to sound: evidence for a flexible ossicular chain.
    Nakajima HH; Ravicz ME; Merchant SN; Peake WT; Rosowski JJ
    Hear Res; 2005 Jun; 204(1-2):60-77. PubMed ID: 15925192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to measure sound transmission via the malleus-incus complex.
    Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH
    Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of tympanic membrane perforation on middle ear transmission in gerbil.
    Stomackin G; Kidd S; Jung TT; Martin GK; Dong W
    Hear Res; 2019 Mar; 373():48-58. PubMed ID: 30583199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study of the acoustic properties of incus replacement prostheses in a human temporal bone model.
    Nishihara S; Goode RL
    Am J Otol; 1994 Jul; 15(4):485-94. PubMed ID: 8588603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the flexible incudo-malleal joint to middle-ear sound transmission under static pressure loads.
    Warnholtz B; Schär M; Sackmann B; Lauxmann M; Chatzimichalis M; Prochazka L; Dobrev I; Huber AM; Sim JH
    Hear Res; 2021 Jul; 406():108272. PubMed ID: 34038827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of increased stiffness of the incudostapedial joint on the transmission of air-conducted sound by the human middle ear.
    Alian W; Majdalawieh O; Kiefte M; Ejnell H; Bance M
    Otol Neurotol; 2013 Oct; 34(8):1503-9. PubMed ID: 23928510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outer- and middle-ear contributions to presbycusis in the Brown Norway rat.
    Gratton MA; Bateman K; Cannuscio JF; Saunders JC
    Audiol Neurootol; 2008; 13(1):37-52. PubMed ID: 17715469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypermobility of the incudostapedial joint: a clinical entity.
    Miller GW; Keith RW
    Laryngoscope; 1979 Dec; 89(12):1943-50. PubMed ID: 513915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of human middle- and inner-ear mechanics with dehiscence of the superior semicircular canal.
    Chien W; Ravicz ME; Rosowski JJ; Merchant SN
    Otol Neurotol; 2007 Feb; 28(2):250-7. PubMed ID: 17255894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malleal processus brevis is dispensable for normal hearing in mice.
    Zhang Z; Zhang X; Avniel WA; Song Y; Jones SM; Jones TA; Fermin C; Chen Y
    Dev Dyn; 2003 May; 227(1):69-77. PubMed ID: 12701100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.