BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 15574386)

  • 1. Carbon nanotubes (CNTs) for the development of electrochemical biosensors.
    Lin Y; Yantasee W; Wang J
    Front Biosci; 2005 Jan; 10():492-505. PubMed ID: 15574386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes.
    Gong K; Dong Y; Xiong S; Chen Y; Mao L
    Biosens Bioelectron; 2004 Sep; 20(2):253-9. PubMed ID: 15308229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube/teflon composite electrochemical sensors and biosensors.
    Wang J; Musameh M
    Anal Chem; 2003 May; 75(9):2075-9. PubMed ID: 12720343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.
    Zhou M; Shang L; Li B; Huang L; Dong S
    Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.
    Vashist SK; Zheng D; Al-Rubeaan K; Luong JH; Sheu FS
    Biotechnol Adv; 2011; 29(2):169-88. PubMed ID: 21034805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical biosensors based on redox carbon nanotubes prepared by noncovalent functionalization with 1,10-phenanthroline-5,6-dione.
    Mao X; Wu Y; Xu L; Cao X; Cui X; Zhu L
    Analyst; 2011 Jan; 136(2):293-8. PubMed ID: 20957284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube-based electrochemical biosensing platforms: fundamentals, applications, and future possibilities.
    Luong JH; Male KB; Hrapovic S
    Recent Pat Biotechnol; 2007; 1(2):181-91. PubMed ID: 19075840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors.
    Wang J; Musameh M; Lin Y
    J Am Chem Soc; 2003 Mar; 125(9):2408-9. PubMed ID: 12603125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors.
    Yao Y; Shiu KK
    Anal Bioanal Chem; 2007 Jan; 387(1):303-9. PubMed ID: 17089098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.
    Zhu L; Zhai J; Yang R; Tian C; Guo L
    Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors.
    Kurusu F; Tsunoda H; Saito A; Tomita A; Kadota A; Kayahara N; Karube I; Gotoh M
    Analyst; 2006 Dec; 131(12):1292-8. PubMed ID: 17124536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nanotube casting on screen-printed carbon electrodes.
    Lee CH; Wang SC; Yuan CJ; Wen MF; Chang KS
    Biosens Bioelectron; 2007 Jan; 22(6):877-84. PubMed ID: 16644200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric detection of L-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase.
    Goran JM; Lyon JL; Stevenson KJ
    Anal Chem; 2011 Nov; 83(21):8123-9. PubMed ID: 21942440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocatalytic electrodes based on single-walled carbon nanotube network thin films.
    Wang D; Rack JJ; Chen L
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2310-5. PubMed ID: 19437969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerized ionic liquid-wrapped carbon nanotubes: the promising composites for direct electrochemistry and biosensing of redox protein.
    Xiao C; Chu X; Wu B; Pang H; Zhang X; Chen J
    Talanta; 2010 Mar; 80(5):1719-24. PubMed ID: 20152402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.
    Barsan MM; Ghica ME; Brett CM
    Anal Chim Acta; 2015 Jun; 881():1-23. PubMed ID: 26041516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents.
    Liu G; Lin Y
    Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an amperometric ethanol biosensor based on a multiwalled carbon nanotube-Nafion-alcohol dehydrogenase nanobiocomposite.
    Liaw HW; Chen JM; Tsai YC
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2396-402. PubMed ID: 17037846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.