These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 15574900)
1. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Matsui GY; Ringelberg DB; Lovell CR Appl Environ Microbiol; 2004 Dec; 70(12):7053-65. PubMed ID: 15574900 [TBL] [Abstract][Full Text] [Related]
2. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Mussmann M; Ishii K; Rabus R; Amann R Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401 [TBL] [Abstract][Full Text] [Related]
3. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Ravenschlag K; Sahm K; Knoblauch C; Jørgensen BB; Amann R Appl Environ Microbiol; 2000 Aug; 66(8):3592-602. PubMed ID: 10919825 [TBL] [Abstract][Full Text] [Related]
4. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Klepac-Ceraj V; Bahr M; Crump BC; Teske AP; Hobbie JE; Polz MF Environ Microbiol; 2004 Jul; 6(7):686-98. PubMed ID: 15186347 [TBL] [Abstract][Full Text] [Related]
5. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
6. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. King JK; Kostka JE; Frischer ME; Saunders FM Appl Environ Microbiol; 2000 Jun; 66(6):2430-7. PubMed ID: 10831421 [TBL] [Abstract][Full Text] [Related]
7. [Sulfate-Reducing Bacterial Communities in the Water Column of the Gdansk Deep (Baltic Sea)]. Korneeva VA; Pimenov NV; Krek AV; Tourova TP; Bryukhanov AL Mikrobiologiia; 2015; 84(2):250-60. PubMed ID: 26263632 [TBL] [Abstract][Full Text] [Related]
8. Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Wieringa EB; Overmann J; Cypionka H Environ Microbiol; 2000 Aug; 2(4):417-27. PubMed ID: 11234930 [TBL] [Abstract][Full Text] [Related]
9. Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Joulian C; Ramsing NB; Ingvorsen K Appl Environ Microbiol; 2001 Jul; 67(7):3314-8. PubMed ID: 11425760 [TBL] [Abstract][Full Text] [Related]
10. A highly selective direct method of detecting sulphate-reducing bacteria in crude oil. Tanaka Y; Sogabe M; Okumura K; Kurane R Lett Appl Microbiol; 2002; 35(3):242-6. PubMed ID: 12180949 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Purdy KJ; Nedwell DB; Embley TM Appl Environ Microbiol; 2003 Jun; 69(6):3181-91. PubMed ID: 12788715 [TBL] [Abstract][Full Text] [Related]
12. The distribution and activity of sulphate reducing bacteria in estuarine and coastal marine sediments. Purdy KJ; Embley TM; Nedwell DB Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):181-7. PubMed ID: 12448716 [TBL] [Abstract][Full Text] [Related]
13. A study of the relative dominance of selected anaerobic sulfate-reducing bacteria in a continuous bioreactor by fluorescence in situ hybridization. Icgen B; Moosa S; Harrison ST Microb Ecol; 2007 Jan; 53(1):43-52. PubMed ID: 16941240 [TBL] [Abstract][Full Text] [Related]
14. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
15. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
16. Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Knoblauch C; Sahm K; Jørgensen BB Int J Syst Bacteriol; 1999 Oct; 49 Pt 4():1631-43. PubMed ID: 10555345 [TBL] [Abstract][Full Text] [Related]
17. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Miralles G; Grossi V; Acquaviva M; Duran R; Claude Bertrand J; Cuny P Chemosphere; 2007 Jul; 68(7):1327-34. PubMed ID: 17337033 [TBL] [Abstract][Full Text] [Related]
18. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925 [TBL] [Abstract][Full Text] [Related]
19. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. Jiang L; Zheng Y; Peng X; Zhou H; Zhang C; Xiao X; Wang F FEMS Microbiol Ecol; 2009 Nov; 70(2):93-106. PubMed ID: 19744241 [TBL] [Abstract][Full Text] [Related]
20. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Ito T; Okabe S; Satoh H; Watanabe Y Appl Environ Microbiol; 2002 Mar; 68(3):1392-402. PubMed ID: 11872492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]