These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 15574944)

  • 41. Viscoelastic fluid description of bacterial biofilm material properties.
    Klapper I; Rupp CJ; Cargo R; Purvedorj B; Stoodley P
    Biotechnol Bioeng; 2002 Nov; 80(3):289-96. PubMed ID: 12226861
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Persistence of biofilm-associated Escherichia coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system.
    Banning N; Toze S; Mee BJ
    Microbiology (Reading); 2003 Jan; 149(Pt 1):47-55. PubMed ID: 12576579
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturates biofilms.
    Steinberger RE; Allen AR; Hansa HG; Holden PA
    Microb Ecol; 2002 May; 43(4):416-23. PubMed ID: 12043001
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stratified growth in Pseudomonas aeruginosa biofilms.
    Werner E; Roe F; Bugnicourt A; Franklin MJ; Heydorn A; Molin S; Pitts B; Stewart PS
    Appl Environ Microbiol; 2004 Oct; 70(10):6188-96. PubMed ID: 15466566
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues.
    Rice SA; Koh KS; Queck SY; Labbate M; Lam KW; Kjelleberg S
    J Bacteriol; 2005 May; 187(10):3477-85. PubMed ID: 15866935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa.
    Kuchma SL; Connolly JP; O'Toole GA
    J Bacteriol; 2005 Feb; 187(4):1441-54. PubMed ID: 15687209
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms.
    Allison DG; Ruiz B; SanJose C; Jaspe A; Gilbert P
    FEMS Microbiol Lett; 1998 Oct; 167(2):179-84. PubMed ID: 9867469
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces.
    Pereira FD; Bonatto CC; Lopes CA; Pereira AL; Silva LP
    Microb Pathog; 2015 Sep; 86():32-7. PubMed ID: 26162295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms.
    Gjermansen M; Ragas P; Sternberg C; Molin S; Tolker-Nielsen T
    Environ Microbiol; 2005 Jun; 7(6):894-906. PubMed ID: 15892708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of the Pseudomonas aeruginosa mushroom morphology and cavity formation by iron-starvation: a mathematical modeling study.
    Miller JK; Badawy HT; Clemons C; Kreider KL; Wilber P; Milsted A; Young G
    J Theor Biol; 2012 Sep; 308():68-78. PubMed ID: 22677397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa.
    Pamp SJ; Tolker-Nielsen T
    J Bacteriol; 2007 Mar; 189(6):2531-9. PubMed ID: 17220224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A model-based approach to detect interspecific interactions during biofilm development.
    Bridier A; Briandet R; Bouchez T; Jabot F
    Biofouling; 2014; 30(7):761-71. PubMed ID: 24963685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction between biofilm development, structure and detachment in rotating annular reactors.
    Garny K; Horn H; Neu TR
    Bioprocess Biosyst Eng; 2008 Oct; 31(6):619-29. PubMed ID: 18320233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biofilms of Listeria monocytogenes produced at 12 °C either in pure culture or in co-culture with Pseudomonas aeruginosa showed reduced susceptibility to sanitizers.
    Lourenço A; Machado H; Brito L
    J Food Sci; 2011 Mar; 76(2):M143-8. PubMed ID: 21535778
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa.
    Barraud N; Hassett DJ; Hwang SH; Rice SA; Kjelleberg S; Webb JS
    J Bacteriol; 2006 Nov; 188(21):7344-53. PubMed ID: 17050922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of chlorine disinfection on redistribution of cell clusters from biofilms.
    Xue Z; Seo Y
    Environ Sci Technol; 2013 Feb; 47(3):1365-72. PubMed ID: 23256749
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anti-biofilm activity of silver nanoparticles against different microorganisms.
    Martinez-Gutierrez F; Boegli L; Agostinho A; Sánchez EM; Bach H; Ruiz F; James G
    Biofouling; 2013; 29(6):651-60. PubMed ID: 23731460
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors.
    Karande R; Halan B; Schmid A; Buehler K
    Biotechnol Bioeng; 2014 Sep; 111(9):1831-40. PubMed ID: 24729096
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of growth history on sloughing and erosion from biofilms.
    Telgmann U; Horn H; Morgenroth E
    Water Res; 2004 Oct; 38(17):3671-84. PubMed ID: 15350418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms.
    Thormann KM; Saville RM; Shukla S; Spormann AM
    J Bacteriol; 2005 Feb; 187(3):1014-21. PubMed ID: 15659679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.