These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 15574944)

  • 61. Dynamic modelling of cell death during biofilm development.
    Fagerlind MG; Webb JS; Barraud N; McDougald D; Jansson A; Nilsson P; Harlén M; Kjelleberg S; Rice SA
    J Theor Biol; 2012 Feb; 295():23-36. PubMed ID: 22100489
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bacterial biofilm formation under microgravity conditions.
    McLean RJ; Cassanto JM; Barnes MB; Koo JH
    FEMS Microbiol Lett; 2001 Feb; 195(2):115-9. PubMed ID: 11179638
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Assessment of change in biofilm architecture by nutrient concentration using a multichannel microdevice flow system.
    Sanchez Z; Tani A; Suzuki N; Kariyama R; Kumon H; Kimbara K
    J Biosci Bioeng; 2013 Mar; 115(3):326-31. PubMed ID: 23085416
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Microbial motility involvement in biofilm structure formation--a 3D modelling study.
    Picioreanu C; Kreft JU; Klausen M; Haagensen JA; Tolker-Nielsen T; Molin S
    Water Sci Technol; 2007; 55(8-9):337-43. PubMed ID: 17547003
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model.
    Machineni L; Rajapantul A; Nandamuri V; Pawar PD
    Bull Math Biol; 2017 Mar; 79(3):594-618. PubMed ID: 28127665
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata.
    Mai-Prochnow A; Evans F; Dalisay-Saludes D; Stelzer S; Egan S; James S; Webb JS; Kjelleberg S
    Appl Environ Microbiol; 2004 Jun; 70(6):3232-8. PubMed ID: 15184116
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of a novel biofilm continuous culture method for simultaneous assessment of architecture and gaseous metabolite production.
    Yawata Y; Nomura N; Uchiyama H
    Appl Environ Microbiol; 2008 Sep; 74(17):5429-35. PubMed ID: 18606794
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium.
    Culotti A; Packman AI
    PLoS One; 2014; 9(9):e107186. PubMed ID: 25198725
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms.
    Shen Y; Monroy GL; Derlon N; Janjaroen D; Huang C; Morgenroth E; Boppart SA; Ashbolt NJ; Liu WT; Nguyen TH
    Environ Sci Technol; 2015 Apr; 49(7):4274-82. PubMed ID: 25699403
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation.
    Huang CT; Xu KD; McFeters GA; Stewart PS
    Appl Environ Microbiol; 1998 Apr; 64(4):1526-31. PubMed ID: 9546188
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of fluid flow conditions on interactions between species in biofilms.
    Zhang W; Sileika T; Packman AI
    FEMS Microbiol Ecol; 2013 May; 84(2):344-54. PubMed ID: 23278485
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment.
    Emerenini BO; Hense BA; Kuttler C; Eberl HJ
    PLoS One; 2015; 10(7):e0132385. PubMed ID: 26197231
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation.
    Roberts ME; Stewart PS
    Antimicrob Agents Chemother; 2004 Jan; 48(1):48-52. PubMed ID: 14693517
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bacteria can form interconnected microcolonies when a self-excreted product reduces their surface motility: evidence from individual-based model simulations.
    Mabrouk N; Deffuant G; Tolker-Nielsen T; Lobry C
    Theory Biosci; 2010 Jun; 129(1):1-13. PubMed ID: 19946800
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of disinfectant exposure and starvation treatment on the detachment of simulated drinking water biofilms.
    Chen J; Li W; Tan Q; Sheng D; Li Y; Chen S; Zhou W
    Sci Total Environ; 2022 Feb; 807(Pt 2):150896. PubMed ID: 34653459
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microbial adhesion and biofilm formation on microfiltration membranes: a detailed characterization using model organisms with increasing complexity.
    Vanysacker L; Denis C; Declerck P; Piasecka A; Vankelecom IF
    Biomed Res Int; 2013; 2013():470867. PubMed ID: 23986906
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cellular automata-based modelling and simulation of biofilm structure on multi-core computers.
    Skoneczny S
    Water Sci Technol; 2015; 72(11):2071-81. PubMed ID: 26606102
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Freter model: a simple model of biofilm formation.
    Jones D; Kojouharov HV; Le D; Smith H
    J Math Biol; 2003 Aug; 47(2):137-52. PubMed ID: 12883858
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Influence of hydrodynamics and nutrients on biofilm structure.
    Stoodley P; Dodds I; Boyle JD; Lappin-Scott HM
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():19S-28S. PubMed ID: 21182689
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biofilms' role in planktonic cell proliferation.
    Bester E; Wolfaardt GM; Aznaveh NB; Greener J
    Int J Mol Sci; 2013 Nov; 14(11):21965-82. PubMed ID: 24201127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.