These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15575302)

  • 41. Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum.
    Ingle RA; Smith JA; Sweetlove LJ
    Biometals; 2005 Dec; 18(6):627-41. PubMed ID: 16388402
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hyperaccumulation of nickel by hairy roots of alyssum species: comparison with whole regenerated plants.
    Nedelkoska TV; Doran PM
    Biotechnol Prog; 2001; 17(4):752-9. PubMed ID: 11485439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale.
    Agrawal B; Czymmek KJ; Sparks DL; Bais HP
    J Biol Chem; 2013 Mar; 288(10):7351-62. PubMed ID: 23322782
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ecophysiology of nickel phytoaccumulation: a simplified biophysical approach.
    Coinchelin D; Bartoli F; Robin C; Echevarria G
    J Exp Bot; 2012 Oct; 63(16):5815-27. PubMed ID: 22987839
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv.
    Mengoni A; Pini F; Huang LN; Shu WS; Bazzicalupo M
    Microb Ecol; 2009 Oct; 58(3):660-7. PubMed ID: 19479304
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epigenetic modifications preserve the hyperaccumulator Noccaea caerulescens from Ni geno-toxicity.
    Gullì M; Marchi L; Fragni R; Buschini A; Visioli G
    Environ Mol Mutagen; 2018 Jul; 59(6):464-475. PubMed ID: 29656392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study.
    Bani A; Echevarria G; Sulçe S; Morel JL
    Int J Phytoremediation; 2015; 17(1-6):117-27. PubMed ID: 25237722
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants.
    Ingle RA; Mugford ST; Rees JD; Campbell MM; Smith JA
    Plant Cell; 2005 Jul; 17(7):2089-106. PubMed ID: 15923352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale.
    Barbaroux R; Plasari E; Mercier G; Simonnot MO; Morel JL; Blais JF
    Sci Total Environ; 2012 Apr; 423():111-9. PubMed ID: 22405560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant.
    Roccotiello E; Serrano HC; Mariotti MG; Branquinho C
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):12414-22. PubMed ID: 26983814
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry.
    Smart KE; Smith JA; Kilburn MR; Martin BG; Hawes C; Grovenor CR
    Plant J; 2010 Sep; 63(5):870-9. PubMed ID: 20561256
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal accumulation by
    Manteca-Bautista D; Pérez-Latorre AV; Freitas H; Hidalgo-Triana N
    Int J Phytoremediation; 2022; 24(12):1301-1309. PubMed ID: 35019784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea.
    Kerkeb L; Krämer U
    Plant Physiol; 2003 Feb; 131(2):716-24. PubMed ID: 12586895
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nickel localization on tissues of hyperaccumulator species of phyllanthus L. (Euphorbiaceae) from ultramafic areas of Cuba.
    Berazaín R; de la Fuente V; Sánchez-Mata D; Rufo L; Rodríguez N; Amils R
    Biol Trace Elem Res; 2007 Jan; 115(1):67-86. PubMed ID: 17406075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode.
    Jhee EM; Boyd RS; Eubanks MD
    New Phytol; 2005 Nov; 168(2):331-44. PubMed ID: 16219073
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges.
    Tognacchini A; Rosenkranz T; van der Ent A; Machinet GE; Echevarria G; Puschenreiter M
    J Environ Manage; 2020 Jan; 254():109798. PubMed ID: 31739090
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes.
    Choi YE; Harada E; Wada M; Tsuboi H; Morita Y; Kusano T; Sano H
    Planta; 2001 May; 213(1):45-50. PubMed ID: 11523655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intraspecific Variation in Nickel Tolerance and Hyperaccumulation among Serpentine and Limestone Populations of
    Pollard AJ; McCartha GL; Quintela-Sabarís C; Flynn TA; Sobczyk MK; Smith JAC
    Plants (Basel); 2021 Apr; 10(4):. PubMed ID: 33921686
    [No Abstract]   [Full Text] [Related]  

  • 59. Nickel hyperaccumulation, elemental profiles and agromining potential of three species of
    Ghafoori M; Shariati M; van der Ent A; Baker AJM
    Int J Phytoremediation; 2023; 25(3):381-392. PubMed ID: 35788162
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study.
    Montargès-Pelletier E; Chardot V; Echevarria G; Michot LJ; Bauer A; Morel JL
    Phytochemistry; 2008 May; 69(8):1695-709. PubMed ID: 18371995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.