These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 15575304)

  • 41. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.
    Du Z; Li H; Gu T
    Biotechnol Adv; 2007; 25(5):464-82. PubMed ID: 17582720
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell.
    Wen Q; Wu Y; Zhao LX; Sun Q; Kong FY
    J Zhejiang Univ Sci B; 2010 Feb; 11(2):87-93. PubMed ID: 20104642
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous wastewater treatment and biological electricity generation.
    Logan BE
    Water Sci Technol; 2005; 52(1-2):31-7. PubMed ID: 16180406
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Electricity generation using the short-arm air-cathode microbial fuel cell].
    Guo K; Li DJ; Li HR; Du ZW
    Huan Jing Ke Xue; 2009 Oct; 30(10):3082-8. PubMed ID: 19968135
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material.
    Özkaya B; Cetinkaya AY; Cakmakci M; Karadağ D; Sahinkaya E
    Bioprocess Biosyst Eng; 2013 Apr; 36(4):399-405. PubMed ID: 22903571
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cathode performance as a factor in electricity generation in microbial fuel cells.
    Oh S; Min B; Logan BE
    Environ Sci Technol; 2004 Sep; 38(18):4900-4. PubMed ID: 15487802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of cassette-electrode microbial fuel cell for wastewater treatment.
    Miyahara M; Hashimoto K; Watanabe K
    J Biosci Bioeng; 2013 Feb; 115(2):176-81. PubMed ID: 23041137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of hydraulic retention time on electricity generation using a solid plain-graphite plate microbial fuel cell anoxic/oxic process for treating pharmaceutical sewage.
    Chang TJ; Chang YH; Chao WL; Jane WN; Chang YT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(13):1185-1197. PubMed ID: 30596323
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater.
    Sevda S; Sreekrishnan TR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):878-86. PubMed ID: 22423995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system.
    Birjandi N; Younesi H; Ghoreyshi AA; Rahimnejad M
    J Environ Manage; 2016 Sep; 180():390-400. PubMed ID: 27262034
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electricity generation from artificial wastewater using an upflow microbial fuel cell.
    He Z; Minteer SD; Angenent LT
    Environ Sci Technol; 2005 Jul; 39(14):5262-7. PubMed ID: 16082955
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-electrode microbial fuel cell with horizontal liquid flow.
    Fedorovich V; Varfolomeev SD; Sizov A; Goryanin I
    Water Sci Technol; 2009; 60(2):347-55. PubMed ID: 19633376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of gradual transition of substrate on performance of flat-panel air-cathode microbial fuel cells to treat domestic wastewater.
    Park Y; Park S; Nguyen VK; Kim JR; Kim HS; Kim BG; Yu J; Lee T
    Bioresour Technol; 2017 Feb; 226():158-163. PubMed ID: 27997870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell.
    Venkata Mohan S; Mohanakrishna G; Sarma PN
    Bioresour Technol; 2010 Feb; 101(3):970-6. PubMed ID: 19818602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells.
    Kim JR; Cheng S; Oh SE; Logan BE
    Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells.
    Puig S; Serra M; Coma M; Cabré M; Balaguer MD; Colprim J
    Bioresour Technol; 2010 Dec; 101(24):9594-9. PubMed ID: 20702091
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater.
    Rossi R; Hur AY; Page MA; Thomas AO; Butkiewicz JJ; Jones DW; Baek G; Saikaly PE; Cropek DM; Logan BE
    Water Res; 2022 May; 215():118208. PubMed ID: 35255425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The tubular MFC with carbon tube air-cathode for power generation and N,N-dimethylacetamide treatment.
    Liu J; Liu L; Gao B
    Environ Technol; 2016; 37(6):762-7. PubMed ID: 26333627
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electricity production from molasses wastewater in two-chamber microbial fuel cell.
    Zhang YJ; Sun CY; Liu XY; Han W; Dong YX; Li YF
    Water Sci Technol; 2013; 68(2):494-8. PubMed ID: 23863446
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing.
    Cheng S; Liu H; Logan BE
    Environ Sci Technol; 2006 Apr; 40(7):2426-32. PubMed ID: 16646485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.