BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 15575692)

  • 1. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway.
    Oldiges M; Kunze M; Degenring D; Sprenger GA; Takors R
    Biotechnol Prog; 2004; 20(6):1623-33. PubMed ID: 15575692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulse experiments as a prerequisite for the quantification of in vivo enzyme kinetics in aromatic amino acid pathway of Escherichia coli.
    Schmitz M; Hirsch E; Bongaerts J; Takors R
    Biotechnol Prog; 2002; 18(5):935-41. PubMed ID: 12363343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli.
    Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G
    Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli].
    Li YH; Liu Y; Wang SC; Tong ZY; Xu QS
    Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):301-6. PubMed ID: 15969011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli to enhance phenylalanine production.
    Yakandawala N; Romeo T; Friesen AD; Madhyastha S
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):283-91. PubMed ID: 18080813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serial 13C-based flux analysis of an L-phenylalanine-producing E. coli strain using the sensor reactor.
    Wahl A; El Massaoudi M; Schipper D; Wiechert W; Takors R
    Biotechnol Prog; 2004; 20(3):706-14. PubMed ID: 15176872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis.
    Tzin V; Malitsky S; Aharoni A; Galili G
    Plant J; 2009 Oct; 60(1):156-67. PubMed ID: 19508381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced l-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt).
    Zhou H; Liao X; Wang T; Du G; Chen J
    Bioresour Technol; 2010 Jun; 101(11):4151-6. PubMed ID: 20137911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered glucose transport and shikimate pathway product yields in E. coli.
    Yi J; Draths KM; Li K; Frost JW
    Biotechnol Prog; 2003; 19(5):1450-9. PubMed ID: 14524706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains.
    Gerigk M; Bujnicki R; Ganpo-Nkwenkwa E; Bongaerts J; Sprenger G; Takors R
    Biotechnol Bioeng; 2002 Dec; 80(7):746-54. PubMed ID: 12402320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli.
    Tatarko M; Romeo T
    Curr Microbiol; 2001 Jul; 43(1):26-32. PubMed ID: 11375660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and application of novel feedback-resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis.
    Zhang C; Kang Z; Zhang J; Du G; Chen J; Yu X
    FEMS Microbiol Lett; 2014 Apr; 353(1):11-8. PubMed ID: 24517515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathway engineering for the production of aromatic compounds in Escherichia coli.
    Flores N; Xiao J; Berry A; Bolivar F; Valle F
    Nat Biotechnol; 1996 May; 14(5):620-3. PubMed ID: 9630954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes.
    Gottlieb K; Albermann C; Sprenger GA
    Microb Cell Fact; 2014 Jul; 13(1):96. PubMed ID: 25012491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-tyrosine production by deregulated strains of Escherichia coli.
    Lütke-Eversloh T; Stephanopoulos G
    Appl Microbiol Biotechnol; 2007 May; 75(1):103-10. PubMed ID: 17221195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp. ATCC 39727.
    Gunnarsson N; Bruheim P; Nielsen J
    Biotechnol Bioeng; 2004 Dec; 88(5):652-63. PubMed ID: 15472928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pheA/tyrA/aroF region from Erwinia herbicola: an emerging comparative basis for analysis of gene organization and regulation in enteric bacteria.
    Xia T; Zhao G; Jensen RA
    J Mol Evol; 1993 Feb; 36(2):107-20. PubMed ID: 8094464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon- and phosphate-limited conditions.
    Johansson L; Lidén G
    J Biotechnol; 2006 Dec; 126(4):528-45. PubMed ID: 16828913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing
    Koma D; Kishida T; Yoshida E; Ohashi H; Yamanaka H; Moriyoshi K; Nagamori E; Ohmoto T
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.