BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15575693)

  • 1. A high-throughput approach to promoter study using green fluorescent protein.
    Lu C; Bentley WE; Rao G
    Biotechnol Prog; 2004; 20(6):1634-40. PubMed ID: 15575693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations.
    Lu C; Bentley WE; Rao G
    Biotechnol Bioeng; 2003 Sep; 83(7):864-70. PubMed ID: 12889026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential rates of gene expression monitored by green fluorescent protein.
    Lu C; Albano CR; Bentley WE; Rao G
    Biotechnol Bioeng; 2002 Aug; 79(4):429-37. PubMed ID: 12115406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative and kinetic study of oxidative stress regulons using green fluorescent protein.
    Lu C; Albano CR; Bentley WE; Rao G
    Biotechnol Bioeng; 2005 Mar; 89(5):574-87. PubMed ID: 15672380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential activities of the SoxR protein of Escherichia coli: SoxS is not required for gene activation under iron deprivation.
    Fuentes AM; Díaz-Mejía JJ; Maldonado-Rodríguez R; Amábile-Cuevas CF
    FEMS Microbiol Lett; 2001 Jul; 201(2):271-5. PubMed ID: 11470373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering and characterization of a superfolder green fluorescent protein.
    Pédelacq JD; Cabantous S; Tran T; Terwilliger TC; Waldo GS
    Nat Biotechnol; 2006 Jan; 24(1):79-88. PubMed ID: 16369541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a sodA::luxCDABE fusion Escherichia coli: comparison with a katG fusion strain through their responses to oxidative stresses.
    Lee HJ; Gu MB
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):577-80. PubMed ID: 12536259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential green fluorescent protein expression from mycobacterial promoter constructs in Escherichia coli and Mycobacterium marinum.
    Gall K; Barker LP
    FEMS Microbiol Lett; 2006 Feb; 255(2):301-7. PubMed ID: 16448510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli aconitases and oxidative stress: post-transcriptional regulation of sodA expression.
    Tang Y; Quail MA; Artymiuk PJ; Guest JR; Green J
    Microbiology (Reading); 2002 Apr; 148(Pt 4):1027-1037. PubMed ID: 11932448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid reporter system using GFP as a reporter protein for identification and screening of synthetic stationary-phase promoters in Escherichia coli.
    Miksch G; Bettenworth F; Friehs K; Flaschel E; Saalbach A; Nattkemper TW
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):229-36. PubMed ID: 16012833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter-reporter units in tandem for detection of arsenic.
    Tani C; Inoue K; Tani Y; Harun-ur-Rashid M; Azuma N; Ueda S; Yoshida K; Maeda I
    J Biosci Bioeng; 2009 Nov; 108(5):414-20. PubMed ID: 19804866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of heterologous expression from PBAD promoter in Escherichia coli production strains.
    Széliová D; Krahulec J; Šafránek M; Lišková V; Turňa J
    J Biotechnol; 2016 Oct; 236():1-9. PubMed ID: 27498315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli.
    Cunningham L; Gruer MJ; Guest JR
    Microbiology (Reading); 1997 Dec; 143 ( Pt 12)():3795-3805. PubMed ID: 9421904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of expression of sodA and msrA genes of Corynebacterium glutamicum in response to oxidative and radiative stress.
    El Shafey HM; Ghanem S
    Genet Mol Res; 2015 Mar; 14(1):2104-17. PubMed ID: 25867357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress.
    Jayaraman M; Radhika V; Bamne MN; Ramos R; Briggs R; Dhanasekaran DN
    Biotechnol Prog; 2005; 21(5):1373-9. PubMed ID: 16209540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of new positive-selection RIVET tools: detection of induced promoters by the excision-based transcriptional activation of an aacCI (GmR)-gfp fusion.
    Lozano MJ; Salas ME; Giusti MA; Draghi WO; Torres Tejerizo GA; Martini MC; Del Papa MF; Pistorio M; Lagares A
    J Biotechnol; 2011 Sep; 155(2):147-55. PubMed ID: 21723338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus.
    Liew ATF; Theis T; Jensen SO; Garcia-Lara J; Foster SJ; Firth N; Lewis PJ; Harry EJ
    Microbiology (Reading); 2011 Mar; 157(Pt 3):666-676. PubMed ID: 21109562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput studies of gene expression using green fluorescent protein-oxidative stress promoter probe constructs: the potential for living chips.
    Albano CR; Lu C; Bentley WE; Rao G
    J Biomol Screen; 2001 Dec; 6(6):421-8. PubMed ID: 11788060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1.
    Kang YS; Lee Y; Jung H; Jeon CO; Madsen EL; Park W
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3246-3254. PubMed ID: 17906124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A propionate-inducible expression system for enteric bacteria.
    Lee SK; Keasling JD
    Appl Environ Microbiol; 2005 Nov; 71(11):6856-62. PubMed ID: 16269719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.