BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 15575718)

  • 21. Nanoporous artificial proboscis for probing minute amount of liquids.
    Tsai CC; Mikes P; Andrukh T; White E; Monaenkova D; Burtovyy O; Burtovyy R; Rubin B; Lukas D; Luzinov I; Owens JR; Kornev KG
    Nanoscale; 2011 Nov; 3(11):4685-95. PubMed ID: 21994037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porous scaffold design for tissue engineering.
    Hollister SJ
    Nat Mater; 2005 Jul; 4(7):518-24. PubMed ID: 16003400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Mobile autonomous robots-Possibilities and limits].
    Maehle E; Brockmann W; Walthelm A
    Zentralbl Chir; 2002 Feb; 127(2):134-40. PubMed ID: 11894217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Life science applications of nanotechnology.
    Lederman L
    Biotechniques; 2004 May; 36(5):741, 743. PubMed ID: 15152591
    [No Abstract]   [Full Text] [Related]  

  • 25. Dielectrophoresis based-cell patterning for tissue engineering.
    Lin RZ; Ho CT; Liu CH; Chang HY
    Biotechnol J; 2006 Sep; 1(9):949-57. PubMed ID: 16941445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A robotic manipulator for handling TLD badges.
    Levinson S; Weinstein M; Abraham A; German U; Gorelik V; Rozenfeld R; Hillel S; Rodnay G
    Health Phys; 2008 Nov; 95(5 Suppl):S190-3. PubMed ID: 18849713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An ontology for a Robot Scientist.
    Soldatova LN; Clare A; Sparkes A; King RD
    Bioinformatics; 2006 Jul; 22(14):e464-71. PubMed ID: 16873508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research.
    Minuth WW; Strehl R
    Biomed Mater; 2007 Jun; 2(2):R1-R11. PubMed ID: 18458434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human cell culture process capability: a comparison of manual and automated production.
    Liu Y; Hourd P; Chandra A; Williams DJ
    J Tissue Eng Regen Med; 2010 Jan; 4(1):45-54. PubMed ID: 19842115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioactive composite materials for tissue engineering scaffolds.
    Boccaccini AR; Blaker JJ
    Expert Rev Med Devices; 2005 May; 2(3):303-17. PubMed ID: 16288594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multipurpose robot for automated cycle sequencing.
    Sawakami-Kobayashi K; Segawa O; Obata K; Hornes E; Yohda M; Tajima H; Machida M
    Biotechniques; 2003 Mar; 34(3):634-7. PubMed ID: 12661168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
    Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M
    Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A modular culture system for the generation of multiple specialized tissues.
    Minuth WW; Denk L; Glashauser A
    Biomaterials; 2010 Apr; 31(11):2945-54. PubMed ID: 20096452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioreactors for tissue mass culture: design, characterization, and recent advances.
    Martin Y; Vermette P
    Biomaterials; 2005 Dec; 26(35):7481-503. PubMed ID: 16023202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laboratory systems integration: robotics and automation.
    Felder RA
    Ann Biol Clin (Paris); 1991; 49(5):298-300. PubMed ID: 1928847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microtechnologies and nanotechnologies for single-cell analysis.
    Andersson H; van den Berg A
    Curr Opin Biotechnol; 2004 Feb; 15(1):44-9. PubMed ID: 15102465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure optimization of microvascular scaffolds.
    Wang GJ; Hsu YF
    Biomed Microdevices; 2006 Mar; 8(1):51-8. PubMed ID: 16491331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The three-dimensional cultivation of the carcinoma cell line HepG2 in a perfused chip system leads to a more differentiated phenotype of the cells compared to monolayer culture.
    Altmann B; Giselbrecht S; Weibezahn KF; Welle A; Gottwald E
    Biomed Mater; 2008 Sep; 3(3):034120. PubMed ID: 18765895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips.
    Ju X; Li D; Gao N; Shi Q; Hou H
    Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.