These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15575724)

  • 1. Oxidation of chlorophenols catalyzed by Coprinus cinereus peroxidase with in situ production of hydrogen peroxide.
    Pezzotti F; Okrasa K; Therisod M
    Biotechnol Prog; 2004; 20(6):1868-71. PubMed ID: 15575724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization.
    Bódalo A; Bastida J; Máximo MF; Montiel MC; Gómez M; Murcia MD
    Bioprocess Biosyst Eng; 2008 Oct; 31(6):587-93. PubMed ID: 18270748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH dependence and structural interpretation of the reactions of Coprinus cinereus peroxidase with hydrogen peroxide, ferulic acid, and 2,2'-azinobis.
    Abelskov AK; Smith AT; Rasmussen CB; Dunford HB; Welinder KG
    Biochemistry; 1997 Aug; 36(31):9453-63. PubMed ID: 9235990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study and immunoanalytical applications for peroxidase from Arthromyces ramosus].
    Kim BB; Pisarev VV; Vlasenko SB; Egorov AM
    Bioorg Khim; 1990 Oct; 16(10):1332-8. PubMed ID: 2085325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet peroxide oxidation of chlorophenols.
    García-Molina V; López-Arias M; Florczyk M; Chamarro E; Esplugas S
    Water Res; 2005 Mar; 39(5):795-802. PubMed ID: 15743624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation.
    Song-hu Y; Xiao-hua L
    J Hazard Mater; 2005 Feb; 118(1-3):85-92. PubMed ID: 15721532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification, characterization and evaluation of extracellular peroxidase from two Coprinus species for aqueous phenol treatment.
    Ikehata K; Buchanan ID; Pickard MA; Smith DW
    Bioresour Technol; 2005 Nov; 96(16):1758-70. PubMed ID: 16051082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activity and selectivity of catalytic peroxide oxidation of chlorophenols over Cu-Al hydrotalcite/clay composite.
    Zhou S; Gu C; Qian Z; Xu J; Xia C
    J Colloid Interface Sci; 2011 May; 357(2):447-52. PubMed ID: 21402383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A catalytic approach to estimate the redox potential of heme-peroxidases.
    Ayala M; Roman R; Vazquez-Duhalt R
    Biochem Biophys Res Commun; 2007 Jun; 357(3):804-8. PubMed ID: 17442271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2,4-Dichlorophenol degradation using Streptomyces viridosporus T7A lignin peroxidase.
    Yee DC; Wood TK
    Biotechnol Prog; 1997; 13(1):53-9. PubMed ID: 9041710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined approach of experiments and computational docking simulation to the Coprinus cinereus peroxidase-catalyzed oxidative polymerization of alkyl phenols.
    Park JC; Joo JC; An ES; Song BK; Kim YH; Yoo YJ
    Bioresour Technol; 2011 Apr; 102(7):4901-4. PubMed ID: 21288714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2,4-dichlorophenol degradation by an integrated process: photoelectrocatalytic oxidation and E-Fenton oxidation.
    Zhao BX; Li XZ; Wang P
    Photochem Photobiol; 2007; 83(3):642-6. PubMed ID: 17132072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soybean peroxidase-catalyzed oxidation of luminol by hydrogen peroxide.
    Alpeeva IS; Sakharov IY
    J Agric Food Chem; 2005 Jul; 53(14):5784-8. PubMed ID: 15998149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Coprinus cinereus peroxidase by 4-chloroaniline during turnover: comparison with horseradish peroxidase and bovine lactoperoxidase.
    Chang HC; Holland RD; Bumpus JA; Churchwell MI; Doerge DR
    Chem Biol Interact; 1999 Dec; 123(3):197-217. PubMed ID: 10654839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of phenolic compounds by peroxidase in the presence of soluble polymers.
    Bratkovskaja I; Vidziunaite R; Kulys J
    Biochemistry (Mosc); 2004 Sep; 69(9):985-92. PubMed ID: 15521812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic Oxidation of Phenol and 2,4-Dichlorophenol by Using Horseradish Peroxidase Immobilized on Graphene Oxide/Fe₃O₄.
    Chang Q; Huang J; Ding Y; Tang H
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27517896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of 2,4-dichlorophenol toxicity to Pseudomonas putida after oxidative incubation with humic substances and a biomimetic catalyst.
    Hahn D; Cozzolino A; Piccolo A; Armenante PM
    Ecotoxicol Environ Saf; 2007 Mar; 66(3):335-42. PubMed ID: 16616957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular peroxidase production by Coprinus species from urea-treated soil.
    Ikehata K; Buchanan ID; Smith DW
    Can J Microbiol; 2004 Jan; 50(1):57-60. PubMed ID: 15052322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic in-capillary derivatization for glucose determination by electrophoresis with spectrophotometric detection.
    Rzygalinski I; Pobozy E; Drewnowska R; Trojanowicz M
    Electrophoresis; 2008 Apr; 29(8):1741-8. PubMed ID: 18383014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Oxidative destruction of estradiol after treatment with hydrogen peroxide catalyzed by horseradish peroxidase and methemoglobin].
    Petrenko IuM; Matiushin AI; Titov VIu
    Biofizika; 1999; 44(2):236-43. PubMed ID: 10418675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.