These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
724 related articles for article (PubMed ID: 15576166)
1. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function. Chun KW; Yoo HS; Yoon JJ; Park TG Biotechnol Prog; 2004; 20(6):1797-801. PubMed ID: 15575714 [TBL] [Abstract][Full Text] [Related]
3. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Mercier NR; Costantino HR; Tracy MA; Bonassar LJ Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168 [TBL] [Abstract][Full Text] [Related]
4. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Park GE; Pattison MA; Park K; Webster TJ Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold. Baek CH; Ko YJ Laryngoscope; 2006 Oct; 116(10):1829-34. PubMed ID: 17016212 [TBL] [Abstract][Full Text] [Related]
6. Tissue-engineered cartilage on biodegradable macroporous scaffolds: cell shape and phenotypic expression. Baek CH; Lee JC; Jung YG; Ko YJ; Yoon JJ; Park TG Laryngoscope; 2002 Jun; 112(6):1050-5. PubMed ID: 12160272 [TBL] [Abstract][Full Text] [Related]
7. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
8. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Yen HJ; Tseng CS; Hsu SH; Tsai CL Biomed Microdevices; 2009 Jun; 11(3):615-24. PubMed ID: 19104940 [TBL] [Abstract][Full Text] [Related]
10. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges. Lu H; Ko YG; Kawazoe N; Chen G Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151 [TBL] [Abstract][Full Text] [Related]
11. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Uematsu K; Hattori K; Ishimoto Y; Yamauchi J; Habata T; Takakura Y; Ohgushi H; Fukuchi T; Sato M Biomaterials; 2005 Jul; 26(20):4273-9. PubMed ID: 15683651 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis. Tang S; Spector M Biomed Mater; 2007 Sep; 2(3):S135-41. PubMed ID: 18458458 [TBL] [Abstract][Full Text] [Related]
13. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
14. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice. Wu W; Feng X; Mao T; Feng X; Ouyang HW; Zhao G; Chen F Br J Oral Maxillofac Surg; 2007 Jun; 45(4):272-8. PubMed ID: 17097777 [TBL] [Abstract][Full Text] [Related]
15. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Dai W; Kawazoe N; Lin X; Dong J; Chen G Biomaterials; 2010 Mar; 31(8):2141-52. PubMed ID: 19962751 [TBL] [Abstract][Full Text] [Related]
16. Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Chen G; Liu D; Tadokoro M; Hirochika R; Ohgushi H; Tanaka J; Tateishi T Biochem Biophys Res Commun; 2004 Sep; 322(1):50-5. PubMed ID: 15313172 [TBL] [Abstract][Full Text] [Related]
17. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide). Shen H; Hu X; Yang F; Bei J; Wang S Biomaterials; 2007 Oct; 28(29):4219-30. PubMed ID: 17618682 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Yamane S; Iwasaki N; Majima T; Funakoshi T; Masuko T; Harada K; Minami A; Monde K; Nishimura S Biomaterials; 2005 Feb; 26(6):611-9. PubMed ID: 15282139 [TBL] [Abstract][Full Text] [Related]
19. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ; Meredith C; Johnson C; Galis ZS Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819 [TBL] [Abstract][Full Text] [Related]