BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 15576168)

  • 1. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering.
    Mercier NR; Costantino HR; Tracy MA; Bonassar LJ
    Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS; Lee EA; Yoon JJ; Park TG
    Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel injectable approach for cartilage formation in vivo using PLG microspheres.
    Mercier NR; Costantino HR; Tracy MA; Bonassar LJ
    Ann Biomed Eng; 2004 Mar; 32(3):418-29. PubMed ID: 15095816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold.
    Chen G; Liu D; Tadokoro M; Hirochika R; Ohgushi H; Tanaka J; Tateishi T
    Biochem Biophys Res Commun; 2004 Sep; 322(1):50-5. PubMed ID: 15313172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness.
    Chen G; Sato T; Ushida T; Hirochika R; Shirasaki Y; Ochiai N; Tateishi T
    J Biomed Mater Res A; 2003 Dec; 67(4):1170-80. PubMed ID: 14624503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold.
    Baek CH; Ko YJ
    Laryngoscope; 2006 Oct; 116(10):1829-34. PubMed ID: 17016212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function.
    Chun KW; Yoo HS; Yoon JJ; Park TG
    Biotechnol Prog; 2004; 20(6):1797-801. PubMed ID: 15575714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open macroporous poly(lactic-co-glycolic Acid) microspheres as an injectable scaffold for cartilage tissue engineering.
    Kang SW; La WG; Kim BS
    J Biomater Sci Polym Ed; 2009; 20(3):399-409. PubMed ID: 19192363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering.
    Kang SW; Jeon O; Kim BS
    Tissue Eng; 2005; 11(3-4):438-47. PubMed ID: 15869422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.
    Park GE; Pattison MA; Park K; Webster TJ
    Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic biodegradable microparticles for articular cartilage tissue engineering.
    Thissen H; Chang KY; Tebb TA; Tsai WB; Glattauer V; Ramshaw JA; Werkmeister JA
    J Biomed Mater Res A; 2006 Jun; 77(3):590-8. PubMed ID: 16506176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.
    Svensson A; Nicklasson E; Harrah T; Panilaitis B; Kaplan DL; Brittberg M; Gatenholm P
    Biomaterials; 2005 Feb; 26(4):419-31. PubMed ID: 15275816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering.
    Tan H; Wu J; Lao L; Gao C
    Acta Biomater; 2009 Jan; 5(1):328-37. PubMed ID: 18723417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition.
    Miot S; Woodfield T; Daniels AU; Suetterlin R; Peterschmitt I; Heberer M; van Blitterswijk CA; Riesle J; Martin I
    Biomaterials; 2005 May; 26(15):2479-89. PubMed ID: 15585250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice.
    Wu W; Feng X; Mao T; Feng X; Ouyang HW; Zhao G; Chen F
    Br J Oral Maxillofac Surg; 2007 Jun; 45(4):272-8. PubMed ID: 17097777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage.
    Kang SW; Yoo SP; Kim BS
    Biomed Mater Eng; 2007; 17(5):269-76. PubMed ID: 17851169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice].
    Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen.
    Yen HJ; Tseng CS; Hsu SH; Tsai CL
    Biomed Microdevices; 2009 Jun; 11(3):615-24. PubMed ID: 19104940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.