These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 15576192)
1. Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Torisawa YS; Shiku H; Yasukawa T; Nishizawa M; Matsue T Biomaterials; 2005 May; 26(14):2165-72. PubMed ID: 15576192 [TBL] [Abstract][Full Text] [Related]
2. A multicellular spheroid-based drug sensitivity test by scanning electrochemical microscopy. Torisawa YS; Takagi A; Shiku H; Yasukawa T; Matsue T Oncol Rep; 2005 Jun; 13(6):1107-12. PubMed ID: 15870929 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system. Torisawa YS; Ohara N; Nagamine K; Kasai S; Yasukawa T; Shiku H; Matsue T Anal Chem; 2006 Nov; 78(22):7625-31. PubMed ID: 17105152 [TBL] [Abstract][Full Text] [Related]
4. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Torisawa YS; Takagi A; Nashimoto Y; Yasukawa T; Shiku H; Matsue T Biomaterials; 2007 Jan; 28(3):559-66. PubMed ID: 16989897 [TBL] [Abstract][Full Text] [Related]
5. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Chen MC; Gupta M; Cheung KC Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849 [TBL] [Abstract][Full Text] [Related]
6. Cell-based chip for the detection of anticancer effect on HeLa cells using cyclic voltammetry. El-Said WA; Yea CH; Kim H; Oh BK; Choi JW Biosens Bioelectron; 2009 Jan; 24(5):1259-65. PubMed ID: 18782663 [TBL] [Abstract][Full Text] [Related]
7. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models. Kloss D; Kurz R; Jahnke HG; Fischer M; Rothermel A; Anderegg U; Simon JC; Robitzki AA Biosens Bioelectron; 2008 May; 23(10):1473-80. PubMed ID: 18289841 [TBL] [Abstract][Full Text] [Related]
8. Development of a novel, multi-analyte biosensor system for assaying cell division: identification of cell proliferation/death precursor events. Kintzios S; Marinopoulou I; Moschopoulou G; Mangana O; Nomikou K; Endo K; Papanastasiou I; Simonian A Biosens Bioelectron; 2006 Jan; 21(7):1365-73. PubMed ID: 15982866 [TBL] [Abstract][Full Text] [Related]
9. Lab-scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration. Krommenhoek EE; van Leeuwen M; Gardeniers H; van Gulik WM; van den Berg A; Li X; Ottens M; van der Wielen LA; Heijnen JJ Biotechnol Bioeng; 2008 Mar; 99(4):884-92. PubMed ID: 17929319 [TBL] [Abstract][Full Text] [Related]
10. Tracking cancer cell proliferation on a CMOS capacitance sensor chip. Prakash SB; Abshire P Biosens Bioelectron; 2008 May; 23(10):1449-57. PubMed ID: 18281207 [TBL] [Abstract][Full Text] [Related]
11. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Lei KF; Wu MH; Hsu CW; Chen YD Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091 [TBL] [Abstract][Full Text] [Related]
12. 3-D tumor model for in vitro evaluation of anticancer drugs. Horning JL; Sahoo SK; Vijayaraghavalu S; Dimitrijevic S; Vasir JK; Jain TK; Panda AK; Labhasetwar V Mol Pharm; 2008; 5(5):849-62. PubMed ID: 18680382 [TBL] [Abstract][Full Text] [Related]
13. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Sung JH; Shuler ML Lab Chip; 2009 May; 9(10):1385-94. PubMed ID: 19417905 [TBL] [Abstract][Full Text] [Related]
14. Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures. Torisawa YS; Kaya T; Takii Y; Oyamatsu D; Nishizawa M; Matsue T Anal Chem; 2003 May; 75(9):2154-8. PubMed ID: 12720355 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Wu LY; Di Carlo D; Lee LP Biomed Microdevices; 2008 Apr; 10(2):197-202. PubMed ID: 17965938 [TBL] [Abstract][Full Text] [Related]
16. Parallel microfluidic networks for studying cellular response to chemical modulation. Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314 [TBL] [Abstract][Full Text] [Related]
17. Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay. Sugiura S; Edahiro J; Kikuchi K; Sumaru K; Kanamori T Biotechnol Bioeng; 2008 Aug; 100(6):1156-65. PubMed ID: 18553395 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical lab on a chip for high-throughput analysis of anticancer drugs efficiency. Popovtzer R; Neufeld T; Popovtzer A; Rivkin I; Margalit R; Engel D; Nudelman A; Rephaeli A; Rishpon J; Shacham-Diamand Y Nanomedicine; 2008 Jun; 4(2):121-6. PubMed ID: 18482873 [TBL] [Abstract][Full Text] [Related]
19. Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays. Liu Q; Yu J; Xiao L; Tang JC; Zhang Y; Wang P; Yang M Biosens Bioelectron; 2009 Jan; 24(5):1305-10. PubMed ID: 18783935 [TBL] [Abstract][Full Text] [Related]
20. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]