These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 15576338)

  • 1. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers.
    Rosas-Acosta G; Russell WK; Deyrieux A; Russell DH; Wilson VG
    Mol Cell Proteomics; 2005 Jan; 4(1):56-72. PubMed ID: 15576338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in novel small ubiquitin-like modifier transgenic mice: putative protective proteins/pathways.
    Yang W; Sheng H; Thompson JW; Zhao S; Wang L; Miao P; Liu X; Moseley MA; Paschen W
    Stroke; 2014 Apr; 45(4):1115-22. PubMed ID: 24569813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins.
    Cuijpers SAG; Willemstein E; Vertegaal ACO
    Mol Cell Proteomics; 2017 Dec; 16(12):2281-2295. PubMed ID: 28951443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle.
    Schimmel J; Larsen KM; Matic I; van Hagen M; Cox J; Mann M; Andersen JS; Vertegaal AC
    Mol Cell Proteomics; 2008 Nov; 7(11):2107-22. PubMed ID: 18565875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryonic Cells Redistribute SUMO1 upon Forced SUMO1 Overexpression.
    Lee A; Zhu Y; Sabo Y; Goff SP
    mBio; 2019 Dec; 10(6):. PubMed ID: 31796536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUMOylation pathway in Trypanosoma cruzi: functional characterization and proteomic analysis of target proteins.
    Bayona JC; Nakayasu ES; Laverrière M; Aguilar C; Sobreira TJ; Choi H; Nesvizhskii AI; Almeida IC; Cazzulo JJ; Alvarez VE
    Mol Cell Proteomics; 2011 Dec; 10(12):M110.007369. PubMed ID: 21832256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Role of Paralog-Specific Sumoylation of HDAC1.
    Citro S; Chiocca S
    Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif.
    Minty A; Dumont X; Kaghad M; Caput D
    J Biol Chem; 2000 Nov; 275(46):36316-23. PubMed ID: 10961991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3.
    Saitoh H; Hinchey J
    J Biol Chem; 2000 Mar; 275(9):6252-8. PubMed ID: 10692421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of SUMO-conjugated proteins and their SUMO attachment sites using proteomic mass spectrometry.
    Wohlschlegel JA
    Methods Mol Biol; 2009; 497():33-49. PubMed ID: 19107409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fluorescent In Vitro Assay to Investigate Paralog-Specific SUMO Conjugation.
    Eisenhardt N; Chaugule VK; Pichler A
    Methods Mol Biol; 2016; 1475():67-78. PubMed ID: 27631798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and quantitation of SUMO chains by mass spectrometry.
    Matic I; Hay RT
    Methods Mol Biol; 2012; 832():239-47. PubMed ID: 22350890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein: definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides.
    Chung TL; Hsiao HH; Yeh YY; Shia HL; Chen YL; Liang PH; Wang AH; Khoo KH; Shoei-Lung Li S
    J Biol Chem; 2004 Sep; 279(38):39653-62. PubMed ID: 15272016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile protein tag, SUMO: its enzymology and biological function.
    Kim KI; Baek SH; Chung CH
    J Cell Physiol; 2002 Jun; 191(3):257-68. PubMed ID: 12012321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paralogue-Specific Roles of SUMO1 and SUMO2/3 in Protein Quality Control and Associated Diseases.
    Wang W; Matunis MJ
    Cells; 2023 Dec; 13(1):. PubMed ID: 38201212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers.
    Ilic D; Magnussen HM; Tirard M
    Semin Cell Dev Biol; 2022 Dec; 132():38-50. PubMed ID: 34996712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy.
    Matic I; van Hagen M; Schimmel J; Macek B; Ogg SC; Tatham MH; Hay RT; Lamond AI; Mann M; Vertegaal ACO
    Mol Cell Proteomics; 2008 Jan; 7(1):132-44. PubMed ID: 17938407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific proteomic strategies to identify ubiquitin and SUMO modifications: Challenges and opportunities.
    Trulsson F; Vertegaal ACO
    Semin Cell Dev Biol; 2022 Dec; 132():97-108. PubMed ID: 34802913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular features of human ubiquitin-like SUMO genes and their encoded proteins.
    Su HL; Li SS
    Gene; 2002 Aug; 296(1-2):65-73. PubMed ID: 12383504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family.
    Novatchkova M; Bachmair A; Eisenhaber B; Eisenhaber F
    BMC Bioinformatics; 2005 Feb; 6():22. PubMed ID: 15698469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.