These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15576679)

  • 1. Identification of genes with fast-evolving regions in microbial genomes.
    Zheng Y; Roberts RJ; Kasif S
    Nucleic Acids Res; 2004; 32(21):6347-57. PubMed ID: 15576679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes.
    Wang D; Liu F; Wang L; Huang S; Yu J
    Biol Direct; 2011 Feb; 6():13. PubMed ID: 21342519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes.
    Su F; Ou HY; Tao F; Tang H; Xu P
    BMC Genomics; 2013 Dec; 14():924. PubMed ID: 24373418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced synonymous site divergence in positively selected vertebrate antimicrobial peptide genes.
    Tennessen JA
    J Mol Evol; 2005 Oct; 61(4):445-55. PubMed ID: 16155748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics and the study of evolution by natural selection.
    Ellegren H
    Mol Ecol; 2008 Nov; 17(21):4586-96. PubMed ID: 19140982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATGC: a database of orthologous genes from closely related prokaryotic genomes and a research platform for microevolution of prokaryotes.
    Novichkov PS; Ratnere I; Wolf YI; Koonin EV; Dubchak I
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D448-54. PubMed ID: 18845571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the Chinese bamboo partridge and red Junglefowl genome sequences highlights the importance of demography in genome evolution.
    Tiley GP; Kimball RT; Braun EL; Burleigh JG
    BMC Genomics; 2018 May; 19(1):336. PubMed ID: 29739321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region.
    Jiang ZJ; Castoe TA; Austin CC; Burbrink FT; Herron MD; McGuire JA; Parkinson CL; Pollock DD
    BMC Evol Biol; 2007 Jul; 7():123. PubMed ID: 17655768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study.
    Podar M; Eads JR; Richardson TH
    BMC Evol Biol; 2005 Aug; 5():42. PubMed ID: 16083508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex prokaryotic genome structure: rapid evolution of chromosome II.
    Bavishi A; Abhishek A; Lin L; Choudhary M
    Genome; 2010 Sep; 53(9):675-87. PubMed ID: 20924417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cassette-like variation of restriction enzyme genes in Escherichia coli C and relatives.
    Sibley MH; Raleigh EA
    Nucleic Acids Res; 2004; 32(2):522-34. PubMed ID: 14744977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata.
    DeRose-Wilson LJ; Gaut BS
    BMC Evol Biol; 2007 Apr; 7():66. PubMed ID: 17451608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The slow:fast substitution ratio reveals changing patterns of natural selection in gamma-proteobacterial genomes.
    Shapiro BJ; Alm E
    ISME J; 2009 Oct; 3(10):1180-92. PubMed ID: 19458656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genomic rate of adaptive amino acid substitution in Drosophila.
    Bierne N; Eyre-Walker A
    Mol Biol Evol; 2004 Jul; 21(7):1350-60. PubMed ID: 15044594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Positional conservation of clusters of overlapping promoter-like sequences in enterobacterial genomes.
    Huerta AM; Collado-Vides J; Francino MP;
    Mol Biol Evol; 2006 May; 23(5):997-1010. PubMed ID: 16547149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helicobacter pylori evolution: lineage- specific adaptations in homologs of eukaryotic Sel1-like genes.
    Ogura M; Perez JC; Mittl PR; Lee HK; Dailide G; Tan S; Ito Y; Secka O; Dailidiene D; Putty K; Berg DE; Kalia A
    PLoS Comput Biol; 2007 Aug; 3(8):e151. PubMed ID: 17696605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication.
    Zhao M; Du J; Lin F; Tong C; Yu J; Huang S; Wang X; Liu S; Ma J
    Plant J; 2013 Oct; 76(2):211-22. PubMed ID: 23869625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.
    Borges V; Gomes JP
    Infect Genet Evol; 2015 Jun; 32():74-88. PubMed ID: 25745888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive diversification of bitter taste receptor genes in Mammalian evolution.
    Shi P; Zhang J; Yang H; Zhang YP
    Mol Biol Evol; 2003 May; 20(5):805-14. PubMed ID: 12679530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomic analysis of human and chimpanzee proteases.
    Puente XS; Gutiérrez-Fernández A; Ordóñez GR; Hillier LW; López-Otín C
    Genomics; 2005 Dec; 86(6):638-47. PubMed ID: 16162398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.