These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15576680)

  • 1. Change of RNase P RNA function by single base mutation correlates with perturbation of metal ion binding in P4 as determined by NMR spectroscopy.
    Schmitz M
    Nucleic Acids Res; 2004; 32(21):6358-66. PubMed ID: 15576680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA.
    Schmitz M; Tinoco I
    RNA; 2000 Sep; 6(9):1212-25. PubMed ID: 10999599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches.
    RĂ¼disser S; Tinoco I
    J Mol Biol; 2000 Feb; 295(5):1211-23. PubMed ID: 10653698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
    Gonzalez RL; Tinoco I
    J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe.
    Cabello-Villegas J; Tworowska I; Nikonowicz EP
    Biochemistry; 2004 Jan; 43(1):55-66. PubMed ID: 14705931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of a metal-binding site in the major groove of RNA complexed with cobalt (III) hexammine.
    Kieft JS; Tinoco I
    Structure; 1997 May; 5(5):713-21. PubMed ID: 9195889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and thermodynamics of metal binding in the P5 helix of a group I intron ribozyme.
    Colmenarejo G; Tinoco I
    J Mol Biol; 1999 Jul; 290(1):119-35. PubMed ID: 10388561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 2'-methyl or 2'-methylene group at G+1 in precursor tRNA interferes with Mg2+ binding at the enzyme-substrate interface in E-S complexes of E. coli RNase P.
    Cuzic S; Hartmann RK
    Biol Chem; 2007 Jul; 388(7):717-26. PubMed ID: 17570824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron regulatory element and internal loop/bulge structure for ferritin mRNA studied by cobalt(III) hexammine binding, molecular modeling, and NMR spectroscopy.
    Gdaniec Z; Sierzputowska-Gracz H; Theil EC
    Biochemistry; 1998 Feb; 37(6):1505-12. PubMed ID: 9484220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR spectroscopic evidence for Mn(2+)(Mg(2+)) binding to a precursor-tRNA microhelix near the potential RNase P cleavage site.
    Zuleeg T; Hartmann RK; Kreutzer R; Limmer S
    J Mol Biol; 2001 Jan; 305(2):181-9. PubMed ID: 11124898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of stabilization of RNA pseudoknots by cobalt(III) hexaammine.
    Nixon PL; Theimer CA; Giedroc DP
    Biopolymers; 1999 Oct; 50(4):443-58. PubMed ID: 10423552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR structure of varkud satellite ribozyme stem-loop V in the presence of magnesium ions and localization of metal-binding sites.
    Campbell DO; Bouchard P; Desjardins G; Legault P
    Biochemistry; 2006 Sep; 45(35):10591-605. PubMed ID: 16939211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein.
    Smith JS; Nikonowicz EP
    Biochemistry; 1998 Sep; 37(39):13486-98. PubMed ID: 9753434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of bacterial RNase P RNA and protein interaction by a magnetic biosensor technique.
    Li D; Meyer MH; Willkomm DK; Keusgen M; Hartmann RK
    Biochimie; 2010 Jul; 92(7):772-8. PubMed ID: 20211679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA.
    Hardt WD; Hartmann RK
    J Mol Biol; 1996 Jun; 259(3):422-33. PubMed ID: 8676378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analyses of neighboring domains of active center of RNase P ribozyme.
    Tanaka T; Haga S; Kanda N; Ando T; Kikuchi Y
    Nucleic Acids Symp Ser (Oxf); 2004; (48):201-2. PubMed ID: 17150548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of the RNase H domain of the HIV-1 reverse transcriptase in the presence of magnesium.
    Pari K; Mueller GA; DeRose EF; Kirby TW; London RE
    Biochemistry; 2003 Jan; 42(3):639-50. PubMed ID: 12534276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA.
    Du Z; Ulyanov NB; Yu J; Andino R; James TL
    Biochemistry; 2004 May; 43(19):5757-71. PubMed ID: 15134450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residues in Escherichia coli RNase P RNA important for cleavage site selection and divalent metal ion binding.
    Kufel J; Kirsebom LA
    J Mol Biol; 1996 Nov; 263(5):685-98. PubMed ID: 8947568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on Escherichia coli RNase P RNA with Zn2+ as the catalytic cofactor.
    Cuzic S; Hartmann RK
    Nucleic Acids Res; 2005; 33(8):2464-74. PubMed ID: 15867194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.